Skip to main content
Log in

Actin isoform and α1B-adrenoceptor gene expression in aortic and coronary smooth muscle is influenced by cyclical stretch

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The occurrence of vascular domains with specific biological and pharmacological characteristics suggests that smooth muscle cells in different arteries may respond differentially to a wide range of environmental stimuli. To determine if some of these vessel-specific differences may be attributable to mechano-sensitive gene regulation, the influence of cyclical stretch on the expression of actin isoform and α1B-adrenoceptor genes was examined in aortic and coronary smooth muscle cells. Cells were seeded on an elastin substrate and subjected to maximal stretching (24% elongation) and relaxation cycles at a frequency of 120 cycles/min in a Flexercell strain unit for 72 h. Total RNA was extracted and hybridized to radiolabeled cDNA probes to assess gene expression. Stretch caused a greater reduction of actin isoform mRNA levels in aortic smooth muscle cells as compared to cells from the coronary artery. Steady-state mRNA levels of α1B -adrenoceptor were also decreased by cyclical stretch in both cell types but the magnitude of the response was greater in coronary smooth muscle cells. No changes in α1B-adrenoceptor or β/γ-actin steady-state mRNA levels were observed in H4IIE cells, a nonvascular, immortalized cell line. The relative gene expression of heat shock protein 70 was not influenced by the cyclic stretch regimen in any of these cell types. These results suggest that stretch may participate in the regulation of gene expression in vascular smooth muscle cells and that this response exhibits some degree of cell-specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. C.; Watt, F. M. Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature (Lond.) 340:307–309; 1989.

    Article  CAS  Google Scholar 

  • Allen, L. F.; Lefkowitz, R. J.; Caron, M. G., et al. G-protein-coupled protooncogenes: constitutively activating mutation of the α1B-adrenergic receptor enhances mitogenesis and tumorigenicity. Proc. Natl. Acad. Sci. USA 88:11354–11358; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Banes, A. J.; Link, G. W., Jr.; Gilbert, J. W., et al. Culturing cells in a mechanically active environment. Amer. Biotech. Lab. 8(7):12–22; 1990.

    CAS  Google Scholar 

  • Bevan, J. A.; Bevan, R. D.; Chang, P. C., et al. Analysis of changes in reactivity of rabbit arteries and veins two weeks after induction of hypertension by coarctation of the abdominal aorta. Circ. Res. 37:183–190; 1975.

    PubMed  CAS  Google Scholar 

  • Bodin, P.; Bailey, D.; Burnstock, G. Increased flow-induced ATP release from vascular endothelial cells but not smooth muscle cells. Br. J. Pharmacol. 103:1203–1205; 1991.

    PubMed  CAS  Google Scholar 

  • Bowes, R. C., III; Ramos, K. S. Differential phospholipid metabolism in rat aortic smooth muscle cells of varying proliferative potential upon long term exposure to phorbol 12-myristate-13-acetate. Chem. Biol. Interactions 86(7):213–228; 1993.

    Article  CAS  Google Scholar 

  • Buck, R. C. Behavior of vascular smooth muscle cells during repeated stretching of the substratum in vitro. Atherosclerosis 46:217–223; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Burn, P. Amphitropic proteins: a new class of membrane proteins. Trends Biochem. Sci. 13:79–83; 1990.

    Article  Google Scholar 

  • Burridge, K.; Fath, K. Focal contacts: transmembrane links between the extracellular matrix and the cytoskeleton. BioEssays 10:104–108; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Chilian, W. M. Functional distribution of α1- and α2- adrenergic receptors in the coronary microcirculation. Circulation 84(5):2108–2122; 1991.

    PubMed  CAS  Google Scholar 

  • Chilian, W. M.; Layne, S. M.; Eastham, C. I., et al. Heterogeneous micro-vascular coronary α-adrenergic vasoconstriction. Circ. Res. 64:376–388; 1989.

    PubMed  CAS  Google Scholar 

  • Coleridge, H. M.; Coleridge, J. C. G.; Poore, E. R., et al. Aortic wall properties and baroreceptor behavior at normal arterial pressure and in acute hypertensive resetting in dogs. J. Physiol. 350:309–326; 1984.

    PubMed  CAS  Google Scholar 

  • Dartsch, P. C.; Haemmerle, H.; Betz, E. Orientation of cultured arterial smooth muscle cells growing on cyclically stretched substrates. Acta Anat. 125:108–113; 1986.

    PubMed  CAS  Google Scholar 

  • Davies, P. F.; Tripathi, S. C. Mechanical stress mechanisms and the cell. An endothelial paradigm. Circ. Res. 72:239–245; 1993.

    PubMed  CAS  Google Scholar 

  • DeMey, J. G. R.; Uitendaal, M. P.; Boonen, H. C. M., et al. Growth responses in isolated elastic, muscular and resistance-sized arterial segments of rat. Blood Vessels 28:372–385; 1991.

    CAS  Google Scholar 

  • Faber, J. E. In situ analysis of α-adrenoceptors on arteriolar and venular smooth muscle in rat skeletal muscle microcirculation. Circ. Res. 62:37–50; 1988.

    PubMed  CAS  Google Scholar 

  • Fernandez, R. J. L.; Ben-Ze’ev, A. Regulation of fibronectin, integrin and cytoskeletal expression in differentiating adipocytes: inhibition by extracellular matrix and polylysine. Differentiation 42:65–74; 1989.

    Article  Google Scholar 

  • Grosso, L. E.; Park, P. W.; Mecham, R. P. Characterization of a putative clone for the 67-kilodalton elastin/laminin receptor suggests that it encodes a cytoplasmic protein rather than a cell surface receptor. Biochemistry 30:3346–3350; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Hedin, U.; Bottger, B. A.; Luthman, J., et al. A substrate of the cell-attachment sequence of fibronectin (Arg-Gly-Asp-Ser) is sufficient to promote transition of arterial smooth muscle cells from a contractile to a synthetic phenotype. Dev. Biol. 133:489–501; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Hedin, U.; Sjolund, M.; Hultgardh-Nilsson, A., et al. Changes in expression and organization of smooth-muscle-specific α actin during fibronectin-mediated modulation of arterial smooth muscle cell phenotype. Differentiation 44:222–231; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Ingber, D. E. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J. Cell Sci. 104:613–627; 1991.

    Google Scholar 

  • Ingber, D. E.; Jamieson, J. D. Cells as tensegrity structures: architectural regulation of histodifferentiation by physical forces transduced over basement membrane. In: Andersson, L. C.; Gahmberg, C. G.; Ekblom, P., eds. Gene expression during normal and malignant differentiation. Academic Press; 1985:13–32.

  • Kocher, O.; Skalli, O.; Cerutti, D., et al Cytoskeletal features of rat aortic cells during development. Circ. Res. 56:829–838; 1985.

    PubMed  CAS  Google Scholar 

  • Leung, D. Y. M.; Glagov, S.; Matthews, M. B. Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191:475–477; 1975.

    Article  Google Scholar 

  • Majesky, M. W.; Daemen, M. J.; Schwartz, S. M. α1-adrenergic stimulation of platelet-derived growth factor A-chain gene expression in rat aorta. J. Biol. Chem. 265:1082–1088; 1990.

    PubMed  CAS  Google Scholar 

  • Mecham, R. P. Elastin synthesis and fiber assembly. Ann. NY Acad. Sci. 624:137–146; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Mecham, R. P.; Whitehouse, L. A.; Wrenn, D. S., et al. Smooth muscle-mediated connective tissue remodeling in pulmonary hypertension. Science 237:423–426; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Mills, I.; Letsou, G.; Rabban, J., et al. Mechanosensitive adenylate cyclase activity in coronary vascular smooth muscle cells. Biochem. Biophys. Res. Comm. 171(1):143–147; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Murray, T. R.; Marshall, B. E.; Macarak, E. J. Contraction of vascular smooth muscle in cell culture. J. Cell. Physiol. 143:26–38; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Nakaki, T.; Nakayama, M.; Yamamoto, S., et al. α1-adrenergic stimulation and β2-adrenergic inhibition of DNA synthesis in vascular smooth muscle cells. Mol. Pharmacol. 37:30–36; 1989.

    Google Scholar 

  • Nigg, E. A. Mechanisms of signal transduction to the cell nucleus. Adv. Cancer Res. 55:271–310; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, K.; Teraoka, H.; Arita, H., et al. Disorganization of microfilaments is accompanied by downregulation of alpha-smooth muscle actin isoform mRNA level in cultured vascular smooth muscle cells. J. Biochem. (Tokyo) 112(1):102–106; 1992.

    CAS  Google Scholar 

  • Owens, G. K.; Thompson, M. M. Developmental changes in isoactin expression in rat aortic smooth muscle cells in vivo. J. Biol. Chem. 261(28):13373–13380; 1986.

    PubMed  CAS  Google Scholar 

  • Ramos, K.; Cox, L. R. Primary cultures of rat aortic endothelial and smooth muscle cells: an in vitro model to study xenobiotic-induced vascular cytotoxicity. In Vitro Cell. Dev. Biol. 23:288–296; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Robert, L.; Jacob, M. P.; Fulop, T., et al. Elastonectin and the elastin receptor. Pathol. Biol. 37(6):736–741; 1989.

    PubMed  CAS  Google Scholar 

  • Seidel, C. L.; Schildmeyer, L. A. Vascular smooth muscle adaptation to increased load. Annu. Rev. Physiol. 49:489–499; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Sottiurai, V. S.; Kollros, P.; Glagow, S., et al. Morphologic alteration of cultured arterial smooth muscle cells by cyclic stretching. J. Surg. Res. 35:490–497; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Sterpetti, A. V.; Cucina, A.; D’Angelo, L. S., et al. Shear stress modulates the proliferation rate, protein synthesis, and mitogenic activity of arterial smooth muscle cells. Surgery 113(6):691–699; 1993.

    PubMed  CAS  Google Scholar 

  • Sumpio, B. E.; Banes, A. J. Response of porcine aortic smooth muscle cells to cyclic tensional deformation in culture. J. Surg. Res. 44:696–701; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Sumpio, B. E.; Banes, A. J.; Link, W. G., et al. Enhanced collagen production by smooth muscle cells during repetitive mechanical stretching. Arch. Surg. 123:1233–1236; 1988.

    PubMed  CAS  Google Scholar 

  • Terracio, L.; Tingstrom, A.; Peters, W. H., et al. A potential role for mechanical stimulation in cardiac development. Ann. NY Acad. Sci. 588:48–60; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Turner, C. E.; Glenney, J. R.; Burridge, K. Paxillin: a new vinculin-binding protein present in focal adhesions. J. Cell. Biol. 111:1059–1068; 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundberg, M.S., Sadhu, D.N., Grumman, V.E. et al. Actin isoform and α1B-adrenoceptor gene expression in aortic and coronary smooth muscle is influenced by cyclical stretch. In Vitro Cell Dev Biol - Animal 31, 595–600 (1995). https://doi.org/10.1007/BF02634312

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634312

Key words

Navigation