Skip to main content
Log in

The gap junctional intercellular communication is no prerequisite for the stabilization of xenobiotic metabolizing enzyme activities in primary rat liver parenchymal cells in vitro

  • Cellular And Molecular Toxicology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

In primary monocultures of adult rat liver parenchymal cells (PC), the activities of the xenobiotic metabolizing enzymes microsomal epoxide hydrolase (mEHb), soluble epoxide hydrolase (sEH), glutathione S-transferases (GST), and phenolsulfotransferase (ST) were reduced after 7 d to values below 33% of the initial activities. Furthermore, the gap junctional intercellular communication (GJIC), measured after microinjection by dye transfer, decreased from 90% on Day 1 to undetectable values after 5 d in monoculture. Co-culture of PC with nonparenchymal rat liver epithelial cells (NEC) increased (98% on Day 1) and stabilized (82% on Day 7) the homotypic GJIC of PC. Additionally, most of the measured xenobiotic metabolizing enzyme activities were well stabilized over 1 wk in co-culture. Because GJIC is one of several mechanisms playing an important role in cell differentiation, the importance of GJIC for the stabilization of xenobiotic metabolizing enzymes in PC was investigated. PC in monoculture were, therefore, treated with 2% dimethyl sulfoxide (DMSO), a differentiation promoting factor, and 1,1,1-trichloro-2,2,-bis (p-chlorophenyl) ethane (DDT) (10 µg/ml), a liver tumor promotor and inhibitor of GJIC, was given to co-cultures of PC with NEC. DMSO significantly stabilized (68% on Day 7), while DDT significantly inhibited (8% on Day 7) homotypic GJIC of PC in the respective culture systems. In contrast, the activities of mEHb, sEH, GST, and ST were not affected in the presence of DMSO or DDT. These results lead to the assumption that the differentiation parameters measured in this study (i.e., homotypic GJIC and the activities of xenobiotic metabolizing enzymes) are independently regulated in adult rat liver PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akrawi, M.; Rogiers, V.; Vanderberghe, Y., et al. Maintenance and induction in co-cultured rat hepatocytes of components of the cytochrome P450-mediated mono-oxygenase. Biochem. Pharmacol. 45:1583–1591; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Arand, M.; Robertson, L. W.; Oesch, F. A fluorometric assay for quantitating phenol sulfotransferase activities in homogenates of cells and tissues. Anal. Biochem. 163:546–551; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Budunova, I. V.; Williams, G. M.; Spray, D. C. Effect of tumor promoting stimuli on gap junction permeability and connexin 43 expression in ARL 18 rat liver cell line. Arch. Toxicol. 67:565–572; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Caveney, S. The role of gap junctions in development. Annu. Rev. Physiol. 47:319–335; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel, R.; Yancey, S. B.; Traub, O., et al. Major loss of the 28-kD protein of gap junction in proliferating hepatocytes. J. Cell Biol. 105:1925–1934; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Donato, M. T.; Gómez-Lechón, M. J.; Castell, J. Drug metabolizing enzymes in rat hepatocytes co-cultured with cell lines. In Vitro Cell. Dev. Biol. 26:1057–1062; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Edelman, G. M.; Thiery, J. P., eds. The cell in contact; adhesions and junctions as morphometric determinants. New York: John Wiley & Sons; 1985.

    Google Scholar 

  • Fitzgerald, D. J.; Mesnil, M.; Oyamada, M., et al. Changes in gap junction protein (Connexin 32) gene expression during rat liver carcinogenesis. J. Cell. Biochem. 41:97–102; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Flodström, S.; Hemming, H.; Wärngard, L., et al. Promotion of altered hepatic foci development in rat liver, cytochrome P450 enzyme induction and inhibition of cell-cell communication by DDT and some structurally related organohalogen pesticides. Carcinogenesis 11:1413–1417; 1990.

    Article  PubMed  Google Scholar 

  • Fraslin, J. M.; Kneip, B.; Vaulot, S., et al. Dependence of hepatocyte-specific gene expression on cell-cell interactions in primary culture. EMBO J. 4:2487–2491; 1985.

    PubMed  CAS  Google Scholar 

  • Goulet, F.; Normand, C.; Morin, O. Cellular interactions promote tissue specific function, biomatrix deposition and junctional communication of primary cultured hepatocytes. Hepatology 8:1010–1018; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Guguen-Guillouzo, C.; Clement, B.; Baffet, G., et al. Maintenance and reversibility of active albumin secretion by adult rat hepatocytes co-cultured with another liver epithelial cell type. Exp. Cell Res. 143:47–54; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Hendrix, E. M.; Skowron Lomneth, C.; Wilfinger, W. W., et al. Quantitative immunoassay of total cellular gap junction protein connexin 32 during liver regeneration using antibodies specific to the COOH-terminus. Tissue & Cell 24:61–73; 1992.

    Article  CAS  Google Scholar 

  • Habig, W. H.; Pabst, M. J.; Jakoby, W. G. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249:7130–7139; 1974.

    PubMed  CAS  Google Scholar 

  • Hughes, R. C.; Stamatoglou, S. C. Adhesive interactions and the metabolic activity of hepatocytes. J. Cell Sci. 8:273–291; 1987.

    CAS  Google Scholar 

  • Isom, H. C.; Secott, T.; Georgoff, I., et al. Maintenance of differentiated rat hepatocytes in primary culture. Proc. Natl. Acad. Sci. USA 82:3252–3256; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Isom, H. G.; Georgoff, I.; Salditt-Georgieff, M., et al. Persistence of liver-specific messenger RNA in cultured hepatocytes: different regulatory events for different genes. J. Cell Biol. 105:2877–2885; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Janssen-Timmen, U.; Traub, O.; Dermietzel, R., et al. Reduced number of gap junctions in rat hepatocarcinomas detected by monoclonal antibody. Carcinogenesis 7:1475–1482; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Klaunig, J. E.; Ruch, R. J.; Weghorst, C. M. Comparative effects of phenobarbital, DDT, and lindane on mouse hepatocyte gap junctional intercellular communication. Toxicol. Appl. Pharmacol. 102:553–563; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Krutovskikh, V. A.; Oyamada, M.; Yamasaki, H. Sequential changes of gap-junctional intercellular communications during multistage rat liver carcinogenesis: direct measurement of communication in vivo. Carcinogenesis 12:1701–1706; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Lindsey, C. K.; Chenery, R. J.; Hawksworth, G. M. Primary culture of rat hepatocytes in the presence of dimethyl sulfoxide. A system to investigate the regulation of cytochrome P450 IA. Biochem. Pharmacol. 42:S17-S25; 1991.

    Article  Google Scholar 

  • Loewenstein, W. R. Junctional intercellular communication: the cell-to-cell membrane channel. Physiol. Rev. 61:829–913; 1981.

    PubMed  CAS  Google Scholar 

  • Lowry, O. H.; Rosebrough, W. J.; Farr, A. L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  • Lubet, R. A.; Dragnev, K. H.; Chauhan, D. P., et al. A pleiotropic response to phenobarbital-type enzyme inducers in the F344/NCr rat. Effects of chemicals of varied structure. Biochem. Pharmacol. 43:1067–1078; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Mesnil, M.; Fraslin, J. M.; Piccoli, C., et al. Cell contact but not junctional communication (dye coupling) with biliary epithelial cells is required for hepatocytes to maintain differentiated functions. Exp. Cell Res. 173:524–533; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Mesnil, M.; Piccoli, C.; Yamasaki, H. An improved long-term culture of rat hepatocytes to detect liver tumour-promoting agents: results with phenobarbital. Eur. J. Pharmacol. 248:59–66; 1993.

    PubMed  CAS  Google Scholar 

  • Meyer D. J.; Yancey, S. B.; Revel, J. P., et al. Intercellular communication in normal and regenerating rat liver: a quantitative analysis. J. Cell Biol. 91:505–523; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Muakkassah-Kelly, S. F.; Bieri, F.; Waechter, F., et al. Long-term maintenance of hepatocytes in primary culture in presence of DMSO: further characterization and effect of nafenopin, a peroxisome proliferator. Exp. Cell Res. 171:37–51; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Oesch, F. Purification and specificity of a microsomal human epoxide hydrase. Biochem. J. 139:77–88; 1974.

    PubMed  CAS  Google Scholar 

  • Oesch, F.; Jerina, D. M.; Daly, J. A radiometric assay for hepatic epoxide hydrase activity with 7-3H-styrene oxide. Biochim. Biophys. Acta 227:685–691; 1971.

    PubMed  CAS  Google Scholar 

  • Oesch, F.; Sparrow, A. J.; Platt, K. L. Radioactively labelled epoxides, part II: tritium labelled cyclohexane oxide, trans-stilbene oxide and phenanthrene 9,10-oxide. J. Labelled Compd. Radiopharm. 17:93–102; 1980.

    Article  CAS  Google Scholar 

  • Rivedal, E.; Yamasaki, H.; Sanner, T. Inhibition of gap junctional intercellular communication in Syrian hamster embryo cells by TPA, retinoic acid and DDT. Carcinogenesis 15:689–694; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Rogiers, V.; Vandenberghe, Y.; Callaerts, A., et al. Phase I and phase II xenobiotic biotransformation in cultures and co-cultures of adult rat hepatocytes. Biochem. Pharmacol. 40:1701–1706; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Rojkind, M.; Gatmaitan, Z.; Mackensen, S., et al. Connective tissue biomatrix: its isolation and utilization for long-term cultures of normal rat hepatocytes. J. Cell Biol. 87:255–263; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Ruch, R. J.; Bonney, W. J.; Sigler, K., et al. Loss of gap junctions from DDT-treated rat liver epithelial cells. Carcinogenesis 15:301–306; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Saez, J. C.; Gregory, W. A.; Watanabe, T., et al. cAMP delays disappearance of gap junctions between pairs of rat hepatocytes in primary culture. Am. J. Physiol. 257:C1-C11; 1989.

    PubMed  CAS  Google Scholar 

  • Schladt, L.; Wörner, W.; Setiabudi, F., et al. Distribution and inducibility of cytosolic epoxide hydrolase in male Sprague Dawley rats. Biochem. Pharmacol. 35:3309–3316; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Schuetz, E. G.; Li, D.; Omiecinski, C. J., et al. Regulation of gene expression in adult rat hepatocytes cultured on a basement membrane matrix. J. Cell. Physiol. 134:309–323; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Seglen, P. O. Preparation of isolated liver cells. In: Prescott, D. M., ed. Methods in cell biology. Vol. 13. New York: Academic Press; 1976:29–83.

    Google Scholar 

  • Simpson, L. Size limit of molecules permeating the junctional membrane channels. Science 195:294–297; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Spray, D. C.; Fujita, M.; Saes, J. C., et al. Proteoglycans and glycosaminoglycans induce gap junction synthesis and function in primary liver cultures. J. Cell Biol. 105:541–551; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Stutenkemper, R.; Geisse, S.; Schwarz, H. J., et al. The hepatocyte specific phenotype of murine liver cells correlates with high expression of connexin 32 and 26 but very low expression of connexin 43. Exp. Cell Res. 210:43–54; 1992.

    Article  Google Scholar 

  • Sugie, S.; Mori, H.; Takahashi, M. Effect of in vivo exposure to the liver tumor promoters phenobarbital or DDT on the gap junctions of rat hepatocytes: a quantitative freeze-fracture analysis. Carcinogenesis 8:45–51; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Traub, O.; Drüge, P. M.; Willecke, K. Degradation and resynthesis of gap junction protein in plasma membranes of regenerating liver after partial hepatectomy or cholestasis. Proc. Natl. Acad. Sci. USA 80:755–759; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Trosko, J. E.; Yotti, L. P.; Warren, S. T., et al. Inhibition of cell-cell communication by tumor promoters. Carcinogenesis 7:565–585; 1982.

    CAS  Google Scholar 

  • Trosko, J. E.; Chang, C. C.; Madhukar, B. V., et al. Chemical, oncogene and growth factor inhibition of gap junctional intercellular communication: an integrative hypothesis of carcinogenesis. Pathobiology 58:265–278; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Utesch, D.; Glatt, H.; Oesch, F. Rat hepatocyte-mediated bacterial mutagenicity in relation to the carcinogenic potency of benzo(a)anthracene, benzo(a)pyrene, and twenty-five methylated derivatives. Cancer Res. 47:1509–1515; 1987.

    PubMed  CAS  Google Scholar 

  • Utesch, D.; Molitor, E.; Platt, K. L., et al. Differential stabilization of cytochrome P-450 isoenzymes in primary cultures of adult rat liver parenchymal cells. In Vitro Cell. Dev. Biol. 27A:858–863; 1991.

    PubMed  CAS  Google Scholar 

  • Utesch, D.; Oesch, F. Dependency of the in vitro stabilization of differentiated functions in liver parenchymal cells on the type of cell line used for co-culture. In Vitro Cell. Dev. Biol. 28A:193–198; 1992a.

    PubMed  CAS  Google Scholar 

  • Utesch, D.; Oesch, F. Phenol sulfotransferase activity in rat liver parenchymal cells cultured on collagen gels. Drug Metab. Dispos. 20:614–615; 1992b.

    PubMed  CAS  Google Scholar 

  • Vandenberghe, Y.; Tee, L.; Rogiers, V., et al. Transcriptional-and post-transcriptional-dependent regulation of glutathione S-transferase expression in rat hepatocytes as a function of culture conditions. FEBS Lett. 313:155–159; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Wacker, W. E. C.; Ulmer D. D.; Vallee, B. L. Malic and lactic acid dehydrogenase activities and zinc concentrations in serum. N. Engl. J. Med. 255:449–451; 1956.

    CAS  Google Scholar 

  • Wang, S. R.; Renaud, G.; Infante, J., et al. Isolation of rat hepatocytes with EDTA and their metabolic functions in primary culture. In Vitro Cell. Dev. Biol. 21:526–530; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Wortelboer, H. W.; De Kruif, C. A.; Van Iersel, A. A. J., et al. The isoenzyme pattern of cytochrome P450 in rat hepatocytes in primary culture, comparing different enzyme activities in microsomal incubations and intact monolayers. Biochem. Pharmacol. 40:2525–2534; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Wortelboer, H. M.; De Kruif, C. A.; Van Iersel, A. A. J., et al. Comparison of cytochrome P450 isoenzyme profiles in rat liver and hepatocyte cultures. The effect of model inducers on apoproteins and biotransformation activities. Biochem. Pharmacol. 42:381–390; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki, H. Gap junctional communication and carcinogenesis. Carcinogenesis 11:1051–1058; 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traiser, M., Diener, B., Utesch, D. et al. The gap junctional intercellular communication is no prerequisite for the stabilization of xenobiotic metabolizing enzyme activities in primary rat liver parenchymal cells in vitro. In Vitro Cell Dev Biol - Animal 31, 266–273 (1995). https://doi.org/10.1007/BF02634000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634000

Key words

Navigation