Skip to main content

Advertisement

Log in

Phthalazinone Pyrazole Enhances the Hepatic Functions of Human Embryonic Stem Cell-Derived Hepatocyte-Like Cells via Suppression of the Epithelial-Mesenchymal Transition

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

During liver development, nonpolarized hepatic progenitor cells differentiate into mature hepatocytes with distinct polarity. This polarity is essential for maintaining the intrinsic properties of hepatocytes. The balance between the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) plays a decisive role in differentiation of polarized hepatocytes. In this study, we found that phthalazinone pyrazole (PP), a selective inhibitor of Aurora-A kinase (Aurora-A), suppressed the EMT during the differentiation of hepatocyte-like cells (HLCs) from human embryonic stem cells. The differentiated HLCs treated with PP at the hepatoblast stage showed enhanced hepatic morphology and functions, particularly with regard to the expression of drug metabolizing enzymes. Moreover, we found that these effects were mediated though suppression of the AKT pathway, which is involved in induction of the EMT, and upregulation of hepatocyte nuclear factor 4α expression rather than Aurora-A inhibition. In conclusion, these findings provided insights into the regulatory role of the EMT on in vitro hepatic maturation, suggesting that inhibition of the EMT may drive transformation of hepatoblast cells into mature and polarized HLCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAT:

Alpha-1 antitrypsin gene

Ac-LDL:

Acetylated-low-density lipoprotein

ALB:

Albumin gene

Aurora-A:

Aurora-A kinase

bFGF:

Basic fibroblast growth factor

BrdU:

Bromodeoxyuridine

BSA:

Bovine serum albumin

CDF:

Carboxy-dichlorofluorescein

CDFDA:

5 (and 6)-carboxy-2,7-dichlorofluorescein diacetate

CK:

Cytokeratin

CYP:

Cytochrome P450

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethylsulfoxide

DPBS:

Dulbecco’s phosphate-buffered saline

ELISA:

Enzyme-linked immunosorbent assay

EMT:

Epithelial-mesenchymal transition

FGF4:

Fibroblast growth factor 4

GSK-3β:

Glycogen synthase kinase-3β

HCM:

Hepatocyte culture medium

HGF:

Hepatocyte growth factor

HLC:

Hepatocyte-like cell

MET:

Mesenchymal-epithelial transition

MRP2:

Multidrug-resistance protein 2

OATP:

Organic anion-transporting polypeptide

OSM:

Oncostatin M

PAS:

Periodic acid-Schiff

PP:

Phthalazinone pyrazole

TDO2:

Tryptophan 2,3-dioxygenase gene

References

  1. Kaplowitz, N. (2005). Idiosyncratic drug hepatotoxicity. Nature Reviews. Drug Discovery, 4, 489–499.

    Article  PubMed  CAS  Google Scholar 

  2. Wilke, R. A., Lin, D. W., Roden, D. M., et al. (2007). Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nature Reviews. Drug Discovery, 6, 904–916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Davila, J. C., Cezar, G. G., Thiede, M., Strom, S., Miki, T., & Trosko, J. (2004). Use and application of stem cells in toxicology. Toxicological Sciences, 79, 214–223.

    Article  PubMed  CAS  Google Scholar 

  4. Goldman, O., Valdes, V. J., Ezhkova, E., & Gouon-Evans, V. (2016). The mesenchymal transcription factor SNAI-1 instructs human liver specification. Stem Cell Research, 17, 62–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7, 131–142.

    Article  PubMed  CAS  Google Scholar 

  6. Treyer, A., & Müsch, A. (2013). Hepatocyte polarity. Comprehensive Physiology, 3, 243–287.

    PubMed  PubMed Central  Google Scholar 

  7. Godoy, P., Hengstler, J. G., Ilkavets, I., et al. (2009). Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor β-induced apoptosis. Hepatology, 49, 2031–2043.

    Article  PubMed  CAS  Google Scholar 

  8. Choi, S. S., & Diehl, A. M. (2009). Epithelial-to-mesenchymal transitions in the liver. Hepatology, 50, 2007–2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Cicchini, C., Amicone, L., Alonzi, T., Marchetti, A., Mancone, C., & Tripodi, M. (2015). Molecular mechanisms controlling the phenotype and the EMT/MET dynamics of hepatocyte. Liver International, 35, 302–310.

    Article  PubMed  Google Scholar 

  10. Wan, X. B., Long, Z. J., Yan, M., et al. (2008). Inhibition of Aurora-A suppresses epithelial-mesenchymal transition and invasion by downregulating MAPK in nasopharyngeal carcinoma cells. Carcinogenesis, 29, 1930–1937.

    Article  PubMed  CAS  Google Scholar 

  11. Ding, Y. H., Zhou, Z. W., Ha, C. F., et al. (2015). Alisertib, an Aurora kinase A inhibitor, induces apoptosis and autophagy but inhibits epithelial to mesenchymal transition in human epithelial ovarian cancer cells. Drug Design, Development and Therapy, 9, 425–464.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Li, J. P., Yang, Y. X., Liu, Q. L., et al. (2015). The pan-inhibitor of aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells. Drug Design, Development and Therapy, 9, 1027–1062.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Prime, M. E., Courtney, S. M., Brookfield, F. A., et al. (2011). Phthalazinone pyrazoles as potent, selective, and orally bioavailable inhibitors of Aurora-A kinase. Journal of Medicinal Chemistry, 54, 312–319.

    Article  PubMed  CAS  Google Scholar 

  14. Lee, J. E., Kang, M. S., Park, M. H., Shim, S. H., Yoon, T. K., Chung, H. M., & Lee, D. R. (2010). Evaluation of 28 human embryonic stem cell lines for use as unrelated donors in stem cell therapy: implications of HLA and ABO genotypes. Cell Transplantation, 19, 1383–1395.

    Article  PubMed  Google Scholar 

  15. Park, H. J., Choi, Y. J., Kim, J. W., et al. (2015). Differences in the epigenetic regulation of cytochrome P450 genes between human embryonic stem cell-derived hepatocytes and primary hepatocytes. PLOS One, 10, e0132992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kim, H. M., Kim, J. W., Choi, Y., et al. (2016). Xeno-sensing activity of the aryl hydrocarbon receptor in human pluripotent stem cell-derived hepatocyte-like cells. Scientific Reports, 6, 21684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Aliagas-Martin, I., Burdick, D., Corson, L., et al. (2009). A class of 2,4-bisanilinopyrimidine Aurora A inhibitors with unusually high selectivity against Aurora B. Journal of Medicinal Chemistry, 52, 3300–3307.

    Article  PubMed  CAS  Google Scholar 

  18. Manfredi, M. G., Ecsedy, J. A., Chakravarty, A., et al. (2011). Characterization of alisertib (MLN8237), an investigational small-molecule inhibitor of Aurora A kinase using novel in vivo pharmacodynamic assays. Clinical Cancer Research, 17, 7614–7624.

    Article  PubMed  CAS  Google Scholar 

  19. Shimomura, T., Hasako, S., Nakatsuru, Y., et al. (2010). MK-5108, a highly selective Aurora-A kinase inhibitor, shows antitumor activity alone and in combination with docetaxel. Molecular Cancer Therapeutics, 9, 157–166.

    Article  PubMed  CAS  Google Scholar 

  20. Hauf, S., Cole, R. W., LaTerra, S., et al. (2003). The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. Journal of Cell Biology, 161, 281–294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yang, J., Ikezoe, T., Nishioka, C., et al. (2007). AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo. Blood, 110, 2034–2040.

    Article  PubMed  CAS  Google Scholar 

  22. Anderson, K., Lai, Z., McDonald, O. B., et al. (2009). Biochemical characterization of GSK1070916, a potent and selective inhibitor of Aurora B and Aurora C kinases with an extremely long residence time1. Biochemical Journal, 420, 259–265.

    Article  PubMed  CAS  Google Scholar 

  23. Keen, N., & Taylor, S. (2004). Aurora-kinase inhibitors as anticancer agents. Nature Reviews Cancer, 4, 927–936.

    Article  PubMed  CAS  Google Scholar 

  24. Katayama, H., & Sen, S. (2010). Aurora kinase inhibitors as anticancer molecules. Biochimica et Biophysica Acta, 1799, 829–839.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sehdev, V., Peng, D., Soutto, M., et al. (2012). The Aurora kinase A inhibitor MLN8237 enhances cisplatin-induced cell death in esophageal adenocarcinoma cells. Molecular Cancer Therapeutics, 11, 763–774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cavallaro, U., & Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nature Reviews Cancer, 4, 118–132.

    Article  PubMed  CAS  Google Scholar 

  27. Zamek-Gliszczynski, M. J., Xiong, H., Patel, N. J., Turncliff, R. Z., Pollack, G. M., & Brouwer, K. L. R. (2003). Pharmacokinetics of 5 (and 6)-carboxy-2′,7′-dichlorofluorescein and its diacetate promoiety in the liver. Journal of Pharmacology and Experimental Therapeutics, 304, 801–809.

    Article  PubMed  CAS  Google Scholar 

  28. Xu, D. R., Huang, S., Long, Z. J., et al. (2011). Inhibition of mitotic kinase Aurora suppresses Akt-1 activation and induces apoptotic cell death in all-trans retinoid acid-resistant acute promyelocytic leukemia cells. Journal of Translational Medicine, 9, 74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Li, J. P., Yang, Y. X., Liu, Q. L., et al. (2015). The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells. Drug Design, Development and Therapy, 9, 1627–1652.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Baxter, M., Withey, S., Harrison, S., et al. (2015). Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. Journal of Hepatology, 62, 581–589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wobus, A. M., & Löser, P. (2011). Present state and future perspectives of using pluripotent stem cells in toxicology research. Archives of Toxicology, 85, 79–117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Yovchev, M. I., Grozdanov, P. N., Zhou, H., Racherla, H., Guha, C., & Dabeva, M. D. (2008). Identification of adult hepatic progenitor cells capable of repopulating injured rat liver. Hepatology, 47, 636–647.

    Article  PubMed  CAS  Google Scholar 

  33. Li, B., Zheng, Y. W., Sano, Y., & Taniguchi, H. (2011). Evidence for mesenchymal-epithelial transition associated with mouse hepatic stem cell differentiation. PLoS ONE, 6, e17092.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Thiery, J. P., Acloque, H., Huang, R. Y. J., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890.

    Article  PubMed  CAS  Google Scholar 

  35. Lu, Z., Ghosh, S., Wang, Z., & Hunter, T. (2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell, 4, 499–515.

    Article  PubMed  CAS  Google Scholar 

  36. Grotegut, S., von Schweinitz, D., Christofori, G., & Lehembre, F. (2006). Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO Journal, 25, 3534–3545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Billottet, C., Tuefferd, M., Gentien, D., Rapinat, A., Thiery, J. P., Broët, P., & Jouanneau, J. (2008). Modulation of several waves of gene expression during FGF-1 induced epithelial-mesenchymal transition of carcinoma cells. Journal of Cellular Biochemistry, 104, 826–839.

    Article  PubMed  CAS  Google Scholar 

  38. Samavarchi-Tehrani, P., Golipour, A., David, L., et al. (2010). Functional genomics reveals a BMP-Driven mesenchymal-to-Epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell, 7, 64–77.

    Article  PubMed  CAS  Google Scholar 

  39. Chen, J., Gao, W., Zhou, P., et al. (2016). Enhancement of hepatocyte differentiation from human embryonic stem cells by Chinese medicine Fuzhenghuayu. Scientific Reports, 6, 18841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Reka, A. K., Kuick, R., Kurapati, H., & Standiford, T. J. (2011). Identifying inhibitors of epithelial-mesenchymal transition by connectivity map – based systems approach. Journal of Thoracic Oncology, 6, 1784–1792.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xi, Y., Tan, K., Brumwell, A. N., et al. (2014). Inhibition of epithelial-to-mesenchymal transition and pulmonary fibrosis by methacycline. American Journal of Respiratory Cell and Molecular Biology, 50, 51–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. D’Assoro, A. B., Liu, T., Quatraro, C., et al. (2014). The mitotic kinase Aurora–a promotes distant metastases by inducing epithelial-to-mesenchymal transition in ERα(+) breast cancer cells. Oncogene, 33, 599–610.

    Article  PubMed  CAS  Google Scholar 

  43. Li, Z., & Rana, T. M. (2012). A kinase inhibitor screen identifies small-molecule enhancers of reprogramming and iPS cell generation. Nature Communications, 3, 1085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Grille, S. J., Bellacosa, A., Upson, J., et al. (2003). The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Research, 63, 2172–2178.

    PubMed  CAS  Google Scholar 

  45. Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A., Moses, H. L., & Arteaga, C. L. (2000). Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. Journal of Biological Chemistry, 275, 36803–36810.

    Article  PubMed  CAS  Google Scholar 

  46. Garibaldi, F., Cicchini, C., Conigliaro, A., et al. (2012). An epistatic mini-circuitry between the transcription factors Snail and HNF4alpha controls liver stem cell and hepatocyte features exhorting opposite regulation on stemness-inhibiting microRNAs. Cell Death and Differentiation, 19, 937–946.

    Article  PubMed  CAS  Google Scholar 

  47. Corchero, J., Granvil, C. P., Akiyama, T. E., et al. (2001). The CYP2D6 humanized mouse: effect of the human CYP2D6 transgene and HNF4alpha on the disposition of debrisoquine in the mouse. Molecular Pharmacology, 60, 1260–1267.

    Article  PubMed  CAS  Google Scholar 

  48. Kamiyama, Y., Matsubara, T., Yoshinari, K., Nagata, K., Kamimura, H., & Yamazoe, Y. (2007). Role of human hepatocyte nuclear factor 4alpha in the expression of drug-metabolizing enzymes and transporters in human hepatocytes assessed by use of small interfering RNA. Drug Metabolism and Pharmacokinetics, 22, 287–298.

    Article  PubMed  CAS  Google Scholar 

  49. Chen, D., Park, Y., & Kimper, B. (1994). Differential protein binding and transcriptional activities of HNF-4 elements in three closely related CYP2C genes. DNA and Cell Biology, 13, 771–779.

    Article  PubMed  CAS  Google Scholar 

  50. Kawashima, S., Kobayashi, K., Takama, K., Higuchi, T., Furihata, T., Hosokawa, M., & Chiba, K. (2006). Involvement of hepatocyte nuclear factor 4α in the different expression level between CYP2C9 and CYP2C19 in the human liver. Drug Metabolism and Disposition, 34, 1012–1018.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CHA Stem Cell Institute (CHA University, Korea) for providing the CHA-hES15 cell line. This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP), Republic of Korea (No. NRF-2012M3A9C7050138). This research was also supported by the Basic Science Research Program through the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP), Republic of Korea (No. NRF-2015R1C1A2A01051471).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Jin Park.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest to disclose.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

12015_2017_9795_MOESM1_ESM.pptx

Supplementary Figure 1. Phase contrast images of HLCs after 5 days of treatment with DMSO or PP (0.1, 1, and 10 μM). Scale bars: 100 μm. (PPTX 1279 KB)

12015_2017_9795_MOESM2_ESM.pptx

Supplementary Figure 2. Relative gene expression levels of hepatic markers were analyzed on day 17 in DMSO control cells and Aurora A inhibitor-treated cells. * p < 0.05, ** p < 0.01, *** p < 0.001 compared with the DMSO control (analysis of variance followed by Bonferroni’s multiple comparison test). (PPTX 91 KB)

12015_2017_9795_MOESM3_ESM.pptx

Supplementary Figure 3. (a) qPCR analysis of Aurora-A after transfection with Aurora-A siRNAs on day 17. *** p < 0.001 compared with the DMSO control (analysis of variance followed by Bonferroni’s multiple comparison test). (b) Levels of total AKT and phospho-AKT1 were determined by western blotting after transfection with Aurora-A siRNAs on day 17 of differentiation. (PPTX 37 KB)

Supplementary material 4 (DOCX 14 KB)

Supplementary material 5 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, YJ., Kim, H., Kim, JW. et al. Phthalazinone Pyrazole Enhances the Hepatic Functions of Human Embryonic Stem Cell-Derived Hepatocyte-Like Cells via Suppression of the Epithelial-Mesenchymal Transition. Stem Cell Rev and Rep 14, 438–450 (2018). https://doi.org/10.1007/s12015-017-9795-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9795-4

Keywords

Navigation