Skip to main content
Log in

Variation in the electrical properties of cultured human proximal tubule cells

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Monolayers of human proximal tubule (HPT) cells, when grown on permeable supports and mounted in Ussing chambers, spontaneously display a transepithelial potential difference (PD), short-circuit current (Isc), and transepithelial specific resistance (RT). These electrical parameters were used to determine the degree of heterogeneity among independent isolates of human proximal tubule cell cultures. Seventeen independent isolates of cells were assessed, totaling 260 individual determinations of spontaneous electrical properties. On average, these cell monolayers displayed an apicalnegative PD of 1.5 ± 0.1 mV, an Isc of 2.7 ± 0.2 µA/cm2, and an RT of 480 ± 19 ohms × cm2. Each independent cell isolate, however, displayed electrical values within a narrow range, in some cases allowing isolates to be distinguished from one another. The individual isolates were also assessed for Na-coupled glucose transport, Na+,K+-ATPase activity, cAMP stimulation by parathyroid hormone (PTH), forskolin stimulation of Isc, and ouabain inhibition. With the exception of a strong correlation between Na+,K+-ATPase activity and Isc, these parameters, in contrast to electrical properties, were found to be consistent and did not reveal distinctions among the isolates. HPT cell cultures seem to consistently retain important features of proximal tubule differentiation while maintaining the variability, as demonstrated by electrical properties, that might be expected of cells isolated from a random population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bello-Reuss, E.; Weber, M. R. Electrophysiological studies on primary cultures of proximal tubule cells. Am. J. Physiol. 251:F490-F498; 1986.

    PubMed  CAS  Google Scholar 

  2. Blackburn, J. G.; Hazen-Martin, D. J.; Detrisac, C. J., et al. Electrophysiology and ultrastructure of cultured human proximal tubule cells. Kidney Int. 33:508–516; 1989.

    Google Scholar 

  3. Detrisac, C. J.; Sens, M. A.; Garvin, A. J., et al. Tissue culture of human epithelial cells of proximal tubule origin. Kidney Int. 25:383–390; 1984.

    PubMed  CAS  Google Scholar 

  4. Fine, L. G.; Sakhrani, L. M. Proximal tubule cells in primary culture. Miner. Electrolyte Metab. 12:51–57; 1986.

    PubMed  CAS  Google Scholar 

  5. Flath, M. C.; Bylander, J. E.; Sens, D. A. Variation in sorbitol accumulation and polyol pathway activity in cultured human proximal tubule cells. Diabetes. 41:1050–1055; 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Forbush, B. Assay of Na,K-ATPase in plasma membrane preparations. Increasing the permeability of membrane vesicles using sodium dodecyl sulfate buffered with bovine serum albumin. Anal. Biochem. 128:159–163; 1983.

    Article  PubMed  CAS  Google Scholar 

  7. Fromter, E.; Gessner, K. Free-flow potential profile along rat kidney proximal tubule. Pflugers Arch. 351:69–83; 1974.

    Article  PubMed  CAS  Google Scholar 

  8. Green, R.; Bishop, J. H. V.; Giebisch, G. Ionic requirements of proximal tubular sodium transport. III. Selective luminal anion substitution. Am. J. Physiol. 236:F268-F277; 1979.

    PubMed  CAS  Google Scholar 

  9. Green, R.; Giebisch, G. Some factors influencing sodium and fluid reabsorption in vivo in the proximal convoluted tubule of rats. In: Giovannetti, S.; Bonomini, V.; D’Amico, G., eds. Sixth International Congress of Nephrology, Proceedings. Basel: Karger; 1975:96–101.

    Google Scholar 

  10. Handler, J. S.; Perkins, F. M.; Johnson, J. B. Studies of renal cell function using cell culture techniques. Am. J. Physiol. 238:F1-F9; 1980.

    PubMed  CAS  Google Scholar 

  11. Hull, R. N.; Cherry, W. R.; Weaver, G. W. The origin and characteristics of a pig kidney cell strain, LLC-PK1. In Vitro 12:670–677; 1976.

    PubMed  CAS  Google Scholar 

  12. Johnson, J. P.; Jones, D.; Weismann, W. P. Hormonal regulation of Na,K-ATPase in cultured epithelial cells. Am. J. Physiol. 251:C186-C190; 1986.

    PubMed  CAS  Google Scholar 

  13. Kempson, S. A.; McAteer, J. A.; Al-Mahrouq, A., et al. Proximal tubule characteristics of cultured human renal cortex epithelium. J. Lab. Clin. Med. 113:285–296; 1989.

    PubMed  CAS  Google Scholar 

  14. Lever, J. E. Expression of differentiated functions in kidney epithelial cell lines. Miner. Electrolyte Metab. 12:14–19; 1986.

    PubMed  CAS  Google Scholar 

  15. Lever, J. E. Inducers of dome formation in epithelial cell cultures including agents that cause differentiation. In: Taub, M., ed. Tissue culture of epithelial cells. New York: Plenum Press; 1985:3–22.

    Google Scholar 

  16. Middleton, J. P.; Dunham, C. B.; Onorato, J. J., et al. Protein kinase A, cytosolic calcium and phosphate uptake in human proximal tubule cells. Am. J. Physiol. 257:F631-F638; 1989.

    PubMed  CAS  Google Scholar 

  17. Misfeldt, D. S.; Hamamoto, S. T.; Pitelka, D. R. Transepithelial transport in cell culture. Proc. Natl. Acad. Sci. USA 73:1212–1216; 1976.

    Article  PubMed  CAS  Google Scholar 

  18. Misfeldt, D. S.; Sanders, M. J. Transepithelial transport in cell culture. Mechanisms and bioenergetics of Na+,d-glucose cotransport. In: Taub, M., ed. Tissue culture of epithelial cells. New York: Plenum Press; 1985:105–124.

    Google Scholar 

  19. Mullin, J. M.; Kleinzeller, A. Sugar transport in the renal epithelial cell culture. In: Taub, M., ed. Tissue culture of epithelial cells. New York: Plenum Press; 1985:71–86.

    Google Scholar 

  20. Mullin, J. M.; O’Brien, T. G. Spontaneous reversal of polarity of the voltage across LLC-PK1 renal epithelial cell sheets. J. Cell. Physiol. 133:515–522; 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Rabito, C. A. Sodium cotransport processes in renal epithelial cell lines. Miner. Electrolyte Metab. 12:32–41; 1986.

    PubMed  CAS  Google Scholar 

  22. Sakhrani, L. M.; Badie-Dezfooly, B.; Trizna, W., et al. Transport and metabolism of glucose by renal proximal tubular cells in primary culture. Am. J. Physiol. 246:F757-F764; 1984.

    PubMed  CAS  Google Scholar 

  23. Sepulveda, F. V.; Pearson, J. D. Amino acid transport in cultured kidney tubule cells. In: Taub, M., ed. Tissue culture of epithelial cells. New York: Plenum Press; 1985:87–104.

    Google Scholar 

  24. Solez, K. Acute renal failure (“acute tubular necrosis”, infarction, and cortical necrosis). In: Heptinstall, R. H., ed. Pathology of the kidney. Boston: Little, Brown and Co.; 1983:1069–1089.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todd, J.H., Sens, M.A., Hazen-Martin, D.J. et al. Variation in the electrical properties of cultured human proximal tubule cells. In Vitro Cell Dev Biol - Animal 29, 371–378 (1993). https://doi.org/10.1007/BF02633984

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02633984

Key words

Navigation