Skip to main content
Log in

The matrix form of collagen and basal microporosity influence basal lamina deposition and laminin synthesis/secretion by stratified human keratinocytes in vitro

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The ability of the collagen matrix form to support the formation of a basal lamina by cultured normal human epidermal keratinocytes (NHEK) was determined using transmission electron microscopy. The collagen matrix forms tested in this study were a) a dry type I collagen film and b) a type I collagen gel. NHEK were grown for 14 days on the following five different substrates: plain plastic culture dishes without the addition of collagen (PP); plain plastic culture dishes overlaid with a dry, aldehyde-crosslinked type I collagen film (DCF-P); plain plastic culture dishes overlaid with an aldehyde-crosslinked type I collagen gel (GEL-P); Millipore Millicell CM microporous membranes overlaid with a dry, aldehyde-crosslinked type I collagen film (DCF-CM); and Millipore Millicell CM microporous membranes overlaid with an aldehyde-crosslinked type I collagen gel (GEL-CM). NHEK maintained for 2 wk on PP and DCF-P were unable to secrete a basal lamina. NHEK grown for 2 wk on the GEL-P and GEL-CM substrates, however, secreted a contiguous basal lamina at the GEL-NHEK interface. To determine if the appearance of this basal lamina correlated with laminin synthesis, laminin was immunoprecipitated from cellular extracts, as well as media from the apical and basal chambers. NHEK grown on the GEL-P substrate synthesized more laminin than did NHEK grown on the other four alternative substrates. In addition, NHEK grown on GEL-CM were able to direct more laminin to the basal compartment than NHEK grown on DCF-CM substrates. Taken together, the data indicate that the matrix form of collagen can influence basal lamina deposition, laminin synthesis, and laminin trafficking in NHEK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstam, L. I.; Vaughn, F. L.; Bernstein, I. A. Keratinocytes grown at the air-liquid interface. In Vitro Cell. Dev. Biol. 22:695–704; 1986.

    Article  PubMed  CAS  Google Scholar 

  2. Bilbo, P. R.; Nolte, C. J.; Oleson, M. A., et al. Skin in complex culture: the transition from “culture” phenotype to organotypic phenotype. J. Toxicol. Cutaneous Ocul. Toxicol. 12:183–196; 1993.

    CAS  Google Scholar 

  3. Carver, N.; Navsaria, H. A.; Fryer, P., et al. Restoration of basement membrane structure in pigs following keratinocyte autografting. Br. J. Plast. Surg. 46:384–392; 1993.

    Article  PubMed  CAS  Google Scholar 

  4. Cook, J. R.; Crute, B. E.; Patrone, L. M., et al. Microporosity of the substratum regulates differentiation of MDCK cells in vitro. In Vitro Cell. Dev. Biol. 25:914–922; 1989.

    Article  PubMed  CAS  Google Scholar 

  5. Cook, J.; Gabriels, J.; Patrone, L., et al. A human epidermal model that can be used in an automated multiple endpoint assay. ATLA 20:313–324; 1992.

    Google Scholar 

  6. Cook, J. R.; Patrone, L. M.; Rhoads, L. S., et al. A human epidermal model grown on an acellular gel. J. Toxicol. Cutaneous Ocul. Toxicol. 12:109–128; 1993.

    CAS  Google Scholar 

  7. Ecay, T. W.; Valentich, J. D. Basal lamina formation by epithelial cell lines correlates with laminin A chain synthesis and secretion. Exp. Cell Res. 203:32–38; 1992.

    Article  PubMed  CAS  Google Scholar 

  8. Fleischmajer, R.; MacDonald, E. D., II; Contard, P., et al. Immunochemistry of a keratinocyte-fibroblast co-culture model for reconstruction of human skin. J. Histochem. Cytochem. 41:1359–1366; 1993.

    PubMed  CAS  Google Scholar 

  9. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  10. Larjava, H.; Salo, T.; Haapasalmi, K., et al. Expression of integrins and basement membrane components by wound keratinocytes. J. Clin. Invest. 92:1425–1435; 1993.

    Article  PubMed  CAS  Google Scholar 

  11. Monical, P. L.; Kefalides, N. A. Coculture modulates laminin synthesis and mRNA levels in epidermal keratinocytes and dermal fibroblasts. Exp. Cell Res. 210:154–159; 1994.

    Article  PubMed  CAS  Google Scholar 

  12. Okamoto, E.; Kitano, Y. Expression of basement membrane components in skin equivalents—influence of dermal fibroblasts. J. Dermatol. Sci. 5:81–88; 1993.

    Article  PubMed  CAS  Google Scholar 

  13. Rhoads, L. S.; Cook, J. R.; Patrone, L. M., et al. A human epidermal model that can be assayed employing a multiple fluorescent endpoint assay and the CytoFluor 2300. J. Toxicol. Cutaneous Ocul. Toxicol. 12:87–108; 1993.

    CAS  Google Scholar 

  14. Rhoads, L. S.; Mershon, M.; Eichelberger, H., et al. A synthetic human epidermal model can distinguish acute from latent toxic effects of the monofunctional mustard analogue, 2-chloroethylethyl sulfide. In Vitro Toxicol., in press; 1994.

  15. Roguet, R.; Cohen, C.; Dossou, K. G., et al. Episkin, a reconstituted human epidermis for assessing in vitro the irritancy of topically applied compounds. Toxicol. in vitro, in press; 1994.

  16. Roguet, R.; Dossou, K. G.; Rougier, A. Use of in vitro skin recombinants to evaluate cutaneous toxicity: a preliminary study. J. Toxicol Cutaneous Ocul. Toxicol. 11:305–315; 1992.

    CAS  Google Scholar 

  17. Roguet, R.; Regnier, M.; Cohen, C. et al. The use of in vitro reconstituted human skin in dermotoxicity. Toxicol. in vitro, in press; 1994.

  18. Schafer, I. A.; Kovach, M.; Price, R. L., et al. Human keratinocytes cultured on collagen gels form an epidermis which synthesizes bullous pemphigoid antigens and alphabetical integrains and secretes laminin, Type IV collagen, and heparin sulfate proteoglycan at the basal cell surface. Exp. Cell Res. 195:443–457; 1991.

    Article  PubMed  CAS  Google Scholar 

  19. Slivka, S. R.; Landeen, L. K.; Zeigler, F., et al. Characterization, barrier function and drug metabolism of an in vitro skin model. J. Invest. Dermatol. 100:40–46; 1993.

    Article  PubMed  CAS  Google Scholar 

  20. Tennenbaum, T.; Yuspa, S. H.; Grover, A., et al. Extracellular matrix receptors and mouse skin carcinogenesis: altered expression linked to appearance of early markers of tumor progression. Cancer Res. 15:2966–2976; 1992.

    Google Scholar 

  21. Tinois, E.; Tiollier, J.; Gaucherand, M., et al. In vitro and post-transplantation differentiation of human keratinocytes grown on the human type IV collagen film of a bilayered dermal substitute. Exp. Cell Res. 193:310–319; 1991.

    Article  PubMed  CAS  Google Scholar 

  22. Vaughan, F.; Gray, R. H.; Bernstein, I. A. Growth and differentiation of primary rat keratinocytes on synthetic membranes. In Vitro Cell. Dev. Biol. 22:141–149; 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, J.R., Van Buskirk, R.G. The matrix form of collagen and basal microporosity influence basal lamina deposition and laminin synthesis/secretion by stratified human keratinocytes in vitro. In Vitro Cell Dev Biol - Animal 31, 132–139 (1995). https://doi.org/10.1007/BF02633973

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02633973

Key words

Navigation