Skip to main content
Log in

Isolation of two morphologically distinct cell lines from rat arterial smooth muscle expressing high tumorigenic potentials

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology – Animal Aims and scope Submit manuscript

Summary

Smooth muscle cell proliferation is an important feature of atherogenesis. Some works have hypothesized that a transformation of smooth muscle cells could arise during this pathological process. The present paper describes two spontaneously transformed cell lines of arterial smooth muscle cells (SMC) established from aortic media of adult rat. The cell lines have been designated V6 and V8; some of their morphologic, growth, and metabolic characteristics are described and compared to their parent cells. The two cell lines appeared distinct by their morphology and by their degree of transformation. V6 cells appeared as elongated spindle-shaped cells whereas V8 cells were spread cells with a cobblestone pattern. Karyotypes of both cell lines showed a high polyploidy level. V6 and V8 cell lines were immortalized and showed growth characteristics of transformed cells: low requirement of serum to grow, ability to form colonies in soft agar and tumorigenicity in nude mice; V8 cells presented a higher malignancy than V6 cells. Both V6 and V8 cells exhibited characteristics of cultured arterial SMC: ultrastructure, alpha actin expression at the protein and mRNA level, prostacyclin production. The remarkably different morphologies of the V6 and V8 lines and their transformed phenotype suggest that these cell lines could be useful models to study SMC differentiation and proliferation with respect to atherosclerotic or hypertensive vascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Absher, M.; Woodcock-Mitchell, J.; Mitchell, J., et al. Characterization of vascular smooth muscle cell phenotype in long-term culture. In Vitro Cell. Dev. Biol. 25:183–192; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Albert, R. E.; Vander Laar, M.; Burns, F., et al. Effect of carcinogens on chicken atherosclerosis. Cancer Res. 37:2232–2235; 1977.

    PubMed  CAS  Google Scholar 

  • Alonso, S.; Minty, A.; Bourelet, Y., et al. Comparison of beta actin sequences in the mouse. Evolutionary relationship between the actin genes of warm blood vertebrates. J. Mol. Evol. 23:11–12; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, T. B.; Sampson, P.; Owens, G. K., et al. Polyploid nuclei in human artery wall smooth muscle cells. Proc. Natl. Acad. Sci. USA 80:882–885; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Barret, T. B.; Benditt, E. P. Platelet-derived growth factor gene expression in human atherosclerotic plaques and normal artery wall. Proc. Natl. Acad. Sci. USA 85:2810–2814; 1988.

    Article  Google Scholar 

  • Benditt, E. P.; Benditt, J. M. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc. Natl. Acad. Sci. USA 70:1753–1756; 1973.

    Article  PubMed  CAS  Google Scholar 

  • Benditt, E. P. Evidence for a monoclonal origin of human atherosclerotic plaques and some implications. Circulation 50:650–652; 1974.

    PubMed  CAS  Google Scholar 

  • Benditt, E. P.; Barrett, T.; McDougall, J. K. Viruses in the etiology of atherosclerosis. Proc. Natl. Acad. Sci. USA 80:6386–6389; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Björkerud, S. Cultivated human arterial smooth muscle displays heterogeneous pattern of growth and phenotypic variation. Lab. Invest. 53:303–310; 1985.

    PubMed  Google Scholar 

  • Blaes, N.; Bourdillon, M. C.; Crouzet, B., et al. Variations in growth and cell cycle time of arterial smooth muscle cells cultured at low density. Cell Tissue Kinet. 13:445–450; 1980.

    PubMed  CAS  Google Scholar 

  • Blaes, N.; Crouzet, B.; Bourdillon, M. C., et al. Comparative phagocytosis in culture of aortic smooth muscle cells and fibroblasts from rat. Proc. Soc. Exp. Biol. Med. 170:453–458; 1982.

    PubMed  CAS  Google Scholar 

  • Blaes, N.; Boissel, J. P. Growth stimulating effect of catecholamines on rat aortic smooth muscle cells in culture. J. Cell. Physiol. 116:167–172; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Blaes, N.; Bourdillon, M. C.; Tabib, A., et al. Etablissement d’une lignée transformée de cellules musculaires lisses artérielles. C. R. Acad. Sci. 307:499–503; 1988.

    CAS  Google Scholar 

  • Blaes, N. Théorie monoclonale de l’athérosclérose: hypothèses et arguments. Sang Thrombose Vaisseaux 2:323–330; 1990.

    Google Scholar 

  • Campbell, J. H.; Campbell, G. R. Vascular smooth muscle in culture, vols I and II. Boca Raton, FL: CRC Press; 1987.

    Google Scholar 

  • Chamley-Campbell, J. H.; Campbell, G. R.; Ross, R. The smooth muscle cell in culture. Physiol. Rev. 59:1–61; 1979.

    PubMed  CAS  Google Scholar 

  • Csonka, E.; Koch, A. S.; Kadar, A., et al. Examination of a spontaneously transformed aortic smooth muscle line. I-Morphological examinations. Acta Morphol. Hung. 32:195–205; 1984.

    PubMed  CAS  Google Scholar 

  • Fabricant, C. G.; Fabricant, J.; Litrenta, M. M., et al. Virus induced atherosclerosis. J. Exp. Med. 148:335–340; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Franke, W. W.; Schmid, E.; Vandekerckhove, J., et al. A permanently proliferating rat vascular smooth muscle cell with maintained expression of smooth muscle characteristics, including actin of the vascular smooth muscle type. J. Cell. Biol. 87:594–600; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, I. D.; Rosen, E. M.; Shapiro, H. M., et al. Isolation and culture of a tetraploid subpopulation of smooth muscle cells from the normal rat aorta. Science 226:559–561; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, D.; Mohai, L. G.; Schwartz, S. M. Induction of polyploidy in cultures of neonatal rat aortic smooth muscle cells. Circ. Res. 59:633–644; 1986.

    PubMed  CAS  Google Scholar 

  • Hendrix, M. G. R.; Dormans, P. H. J.; Kitslaar, P. The presence of cytomegalovirus nucleic acids in arterial walls of atherosclerotic and non atherosclerotic patients. Am. J. Pathol. 134:1151–1157; 1989.

    PubMed  CAS  Google Scholar 

  • Kimes, B. W.; Brandt, B. L. Characterization of two putative smooth muscle cell lines from rat thoracic aorta. Exp. Cell. Res. 98:349–366; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Kocher, O.; Gabbiani, G. Expression of actin mRNAs in rat aortic smooth muscle cells during development, experimental intimal thickening and culture. Differentiation 32:245–251; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Larrue, J.; Dorian, B.; Bonnet, J., et al. Eicosanoid production of vascular smooth muscle cells in culture. In: Campbell, J. H.; Campbell, G. R., eds. Vascular smooth muscle in culture, vol. 2. Boca Raton, FL: CRC Press; 1987:31–45.

    Google Scholar 

  • Leavitt, J.; Gunning, P.; Kedes, L., et al. Smooth muscleα-actin is a transformation-sensitive marker for mouse NIH 3T3 and Rat-2 cells. Nature 316:840–842; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Majesky, M. W.; Reidy, M. A.; Benditt, E. P., et al. Focal smooth muscle proliferation in the aortic intima produced by an initiation promotion sequence. Proc. Natl. Acad. Sci. USA 82:3450–3454; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Majesky, M. W.; Benditt, E. P.; Schwartz, S. M. Expression and developmental control of platelet derived growth factor A-chain and B-chain/sis genes in rat aortic smooth muscle cells. Proc. Natl. Acad. Sci. USA 85:1524–1528; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis, T.; Fritsch, E. F.; Sambroo, K. J. Molecular cloning, a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1982.

    Google Scholar 

  • Munro, J. M.; Cotran, R. S. The pathogenesis of atherosclerosis: atherogenesis and inflammation. Lab. Invest. 58:249–261; 1988.

    PubMed  CAS  Google Scholar 

  • Nachtigal, M.; Legrand, A.; Nagpal, M. L., et al. Transformation of rabbit vascular smooth muscle cells by transfection with the early region of SV 40 DNA. Am. J. Pathol. 136:297–306; 1990a.

    PubMed  CAS  Google Scholar 

  • Nachtigal, M.; Legrand, A.; Greenspan, P., et al. Immortalization of rabbit vascular smooth muscle cells after transfection with a fragment of the BgI II N region of herpes simplex virus type 2 DNA. Intervirology 31:166–174; 1990b.

    PubMed  CAS  Google Scholar 

  • Nilsson, J.; Sjölund, M.; Palmberg, L., et al. Arterial smooth muscle cells in primary culture produce a platelet-derived growth factor-like protein. Proc. Natl. Acad. Sci. USA 82:4418–4422; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Owens, G. K.; Schwartz, S. M. Alterations in vascular smooth muscle mass in the spontaneously hypertensive rat: role of cellular hypertrophy, hyperploidy and hyperplasia. Circ. Res. 51:280–289; 1982.

    PubMed  CAS  Google Scholar 

  • Owens, G. K. Control of hypertrophic versus hyperplastic growth of vascular smooth muscle cells. Am. J. Physiol. 257:H1755-H1765; 1989.

    PubMed  CAS  Google Scholar 

  • Penn, A.; Garte, S. J.; Warren, L., et al. Transforming gene in human atherosclerotic plaque DNA. Proc. Natl. Acad. Sci. USA 83:7951–7956; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Pharaboz, M. O.; Cordier, G.; André, J. Flow cytometry studies of MET F4 tumor cells whose growth is stimulated by estrodiol treatment. Mol. Cell. Endocrinol. 48:229–237; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Reilly, C. F. Rat vascular smooth muscle cells immortalized with SV 40 large T antigen possess defined smooth muscle cell characteristics including growth inhibition by heparin. J. Cell Physiol. 142:342–351; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, E. M.; Goldberg, I. D.; Shapiro, H. M., et al. Strain and site dependence of polyploidization of cultured rat smooth muscle. J. Cell. Physiol. 128:337–344; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Ross, R.; Glomset, J. The pathogenesis of atherosclerosis. N. Engl. J. Med. 295:369–377; 420–425; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Ross, R. The pathogenesis of atherosclerosis: an update. N. Engl. J. Med. 314:488–500; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, D.; Harris, A. J.; Devine, C. E., et al. Characterization of a unique muscle cell line. J. Cell. Biol. 61:398–413; 1980.

    Article  Google Scholar 

  • Schwartz, S. M.; Reidy, M. R.; Clowes, A. Kinetics or atherosclerosis: a stem cell model. Ann. NY Acad. Sci. 454:292–304; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, S. M.; Campbell, G. R.; Campbell, J. H. Replication of smooth muscle cells in vascular disease. Circ. Res. 58:427–444; 1986.

    PubMed  CAS  Google Scholar 

  • Schwartz, S. M.; Foy, L.; Bowen-Pope, D. F., et al. Derivation and properties of platelet-derived growth factor-independent rat smooth muscle cells. Am. J. Pathol. 136:1417–1428; 1990.

    PubMed  CAS  Google Scholar 

  • Seifert, R. A.; Schwartz, S. M.; Bowen-Pope, D. F. Developmentally regulated production of platelet-derived growth factor-like molecules. Nature 311:669–671; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Sjölund, M.; Hedin, U.; Sejersen, T., et al. Arterial smooth muscle cells express platelet-derived growth factor (PDGF) A chain mRNA, secrete a PDGF-like mitogen, and bind exogenous PDGF in a phenotype and growth state dependent manner. J. Cell. Biol. 106:403–413; 1988.

    Article  PubMed  Google Scholar 

  • Skalli, O.; Ropraz, P.; Tezeciak, A., et al. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J. Cell. Biol. 103:2787–2796; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Walker, L. N.; Bowen-Pope, D. F.; Ross, R., et al. Production of platelet-derived growth factor-like molecules by cultured arterial smooth muscle cells accompanies proliferation after arterial injury. Proc. Natl. Acad. Sci. USA 83:7311–7315; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox, J. N.; Smith, K. M.; Williams, L. T., et al. Platelet derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization. J. Clin. Invest. 82:1134–1143; 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Electron microscopy was performed in the Center of Electron Microscopy Applied to Biology and Geology (CEMABG), Claude Bernard University, Lyon I. Flow cytofluorometry was performed in the Center of Fluorometry, Department of Human Biology, Claude Bernard University, Lyon I and funded by ARC No 6055-80.

This work was supported by INSERM, by MRT grant 86-C-0301 and by ARC grant 415-87.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaes, N., Bourdillon, MC., Daniel-Lamaziere, JM. et al. Isolation of two morphologically distinct cell lines from rat arterial smooth muscle expressing high tumorigenic potentials. In Vitro Cell Dev Biol – Animal 27, 725–734 (1991). https://doi.org/10.1007/BF02633218

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02633218

Key words

Navigation