Skip to main content
Log in

An anatomical study of secondary embryogenesis inCamellia reticulata

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

An anatomical study was carried out during the sequences of events which lead to the differentiation of secondary embryos ofCamellia reticulata cv ‘Mouchang’. Secondary embryogenesis can be induced by culturing somatic embryos on a modified Murashige and Skoog medium supplemented with 0.5 mg·liter−1 6-benzylaminopurine and 0.1 mg·liter−1 indole-3-butyric acid. After about 12 days of culture, globular-shaped secondary embryos became apparent, and by 18 to 20 days of culture cotyledonary stages were formed. Embryos developed mainly on the hypocotyl of primary embryos without an intermediate callus. Histologic monitoring revealed that secondary embryos apparently had a multicellular origin from embryogenic areas originating in both epidermal and subepidermal layers of the hypocotyl region. This morphogenetic competence is related to the presence, at the time of culture, of relatively undifferentiated cells in superfical layers of the primary embryo hypocotyl. Microcomputer image analysis was applied for quantifying cytological events associated with somatic embryogenesis. This method showed an increasing gradient in the nucleus-to-cell area ratio from differentiated cells passing through preembryogenic cells to embryogenic cells. The formation of embryogenic areas was preceded by accumulation of starch in the surrounding cortical cells. The cells underlying globular secondary embryos still contained abundant starch, but it declined as the secondary embryos developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammirato, P. V. Recent progress in somatic embryogenesis. Newsletter IAPTC 57:2–16; 1989.

    Google Scholar 

  2. El Maâtaoui, M.; Espagnac, H.; Michaux-Ferrière, N. Histology of callogenesis and somatic embryogenesis induced in stem fragments of Cork Oak (Quercus suber) cultured in vitro. Ann. Bot. 66:183–190; 1990.

    Google Scholar 

  3. Féraud-Keller, C.; El Maâtaoui, M.; Gouin, O., et al. Embryogenése somatique chez trois espèces de chênes méditerranéens. Ann. Sci. For. 46(suppl):130s-132s; 1989.

    Article  Google Scholar 

  4. Flinn, B. S.; Webb, D. T.; Newcomb, W. Morphometric analysis of reserve substances and ultrastructural changes during caulogenic determination and loss of competence of Eastern White pine (Pinus strobus) cotyledons in vitro. Can. J. Bot. 66:183–190; 1989.

    Google Scholar 

  5. Haccius, B. Question of unicellular origin of non-zygotic embryos in callus cultures. Phytomorphology 28:74–81; 1978.

    Google Scholar 

  6. Hartmann, H. T.; Kester, D. E.; Davies, F. T., Jr. Plant propagation: principles and practices, 5th ed. Englewood Cliffs, NJ: Prentice-Hall International Inc.; 1990:208–218.

    Google Scholar 

  7. Jensen, W. A. Botanical histochemistry. San Francisco, CA: W. H. Freeman; 1962:55–99.

    Google Scholar 

  8. Lu, C.; Vasil, I. K. Histology of somatic embryogenesis inPanicum maximum (Guinea grass). Am. J. Bot. 72:1989–1913; 1985.

    Article  Google Scholar 

  9. Mangat, B. S.; Pelekis, M. K.; Cassells, A. C. Changes in the starch content during organogenesis in in vitro culturedBegonia rex stem explants. Physiol. Plant 79:267–274; 1990.

    Article  CAS  Google Scholar 

  10. Margara, J. Bases de la multiplication végétative. Les méristèmes et l’organogenèse. Paris: Institut National de la Recherche Agronomique; 1982:25–29.

    Google Scholar 

  11. Mauseth, J. D. Plant anatomy. Menlo Park, CA: The Benjamin-Cummings Publ. Company; 1988:79–107.

    Google Scholar 

  12. Mazia, D.; Brewer, P. A.; Alfert, M. The cytochemical staining and measurement of protein with mercuric bromophenol blue. Biol. Bull. 104:57–67; 1953.

    Article  CAS  Google Scholar 

  13. McClelland, M. T.; Smith, M. A. L. Vessel type, clousre, and explant orientation influence in vitro performance of five woody species. HortScience 25(7):797–800; 1990.

    Google Scholar 

  14. Merkle, S. A.; Wiecko, A. T. Regeneration ofRobinia pseudoacacia via somatic embryogenesis. Can. J. For. Res. 19:285–288; 1989.

    Google Scholar 

  15. Michaux-Ferrière, N.; Carron, M. Histology of early somatic embryogenesis inHevea brasiliensis: the importance of the timing of subculturing. Plant Cell Tissue Organ Cult. 19:243–256; 1989.

    Article  Google Scholar 

  16. Michaux-Ferrière, N.; Bieysse, D.; Alvard, D., et al. Etude histologique de l’embryogenése somatique chez Coffeea arabica, induite par culture sur milieux uniques de fragments foliaires de gńotypes différents. Café Cacao Thé 33(4):207–217; 1989.

    Google Scholar 

  17. Muralidharan, E. M.; Gupta, P. K.; Mascarenhas, A. F. Plantlet production through high frequency somatic embryogenesis in long term cultures ofEucalyptus citriodora. Plant Cell Rep. 8:41–43; 1989.

    Article  Google Scholar 

  18. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  19. Patel, K. R.; Thorpe, T. A. Histochemical examination of shoot initiation in cultured cotyledon explants of radiata pine. Bot. Gaz. 145(3):312–322; 1984.

    Article  CAS  Google Scholar 

  20. Plata, E.; Viéitez, A. M. In vitro regeneration ofCamellia reticulata by somatic embryogenesis. J. Hortic. Sci. 65(6):707–714; 1990.

    Google Scholar 

  21. Profumo, P.; Gastaldo, P.; Dameri, R. M., et al. Histological study of calli and embryoids from leaf explants ofAesculus hisppocastanum L. J. Plant. Physiol. 126:97–103; 1986.

    Google Scholar 

  22. Quinn, J.; Simon, J. E.; Janick, J. Histology of zygotic and somatic embryogenesis in borage. J. Am. Soc. Hortic. Sci. 114(3):516–520; 1989.

    Google Scholar 

  23. Raj Bhansali, R. Somatic embryogenesis and regeneration of plantlets in pomegranate. Ann. Bot. 66:249–253; 1990.

    Google Scholar 

  24. Raj Bhansali, R.; Driver, J. A.; Durzan, D. J. Rapid multiplication of adventitious somatic embryos in peach and nectarine by secondary embryogenesis. Plant Cell Rep. 9:280–284; 1990.

    Article  Google Scholar 

  25. Redenbaugh, K.; Slade, D.; Viss, P., et al. Encapsulation of somatic embryos in synthetic seed coats. HortScience 22(5):803–809; 1987.

    Google Scholar 

  26. Schwendiman, J.; Pannetier, C.; Michaux-Ferrière, N. Histology of somatic embryogenesis from leaf explants of the oil palmElaeis guineensis. Ann. Bot. 62:43–52; 1988.

    Google Scholar 

  27. Sharma, K. K.; Bhojwani, S. S. Histological aspects of in vitro root and shoot differentiation from cotyledon explants ofBrassica juncea (L.) Czern. Plant Sci. 69:207–214; 1990.

    Article  Google Scholar 

  28. Sharp, W. R.; Sondhal, M. R.; Caldas, R. S., et al. The physiology of in vitro asexual embryogenesis. Hortic. Rev. 2:268–310; 1980.

    CAS  Google Scholar 

  29. Smith, M. A. L.; Spomer, L. A.; Meyer, M. J., et al. Non-invasive evaluation of growth during plant micropropagation. Plant Cell Tissue Organ Cult. 19:91–102; 1989.

    Article  Google Scholar 

  30. Stamp, J. A. Somatic embryogenesis in cassava: the anatomy and morphology of the regeneration process. Ann. Bot. 59:451–459; 1987.

    Google Scholar 

  31. Stamp, J. A.; Henshaw, G. G. Secondary somatic embryogenesis and plant regeneration in cassava (Mannihot esculenta Grantz). Plant Cell Tissue Organ Cult. 10:227–233; 1987.

    Article  CAS  Google Scholar 

  32. Thorpe, T. A. Organogenesis in vitro: structural, physiological and biochemical aspects, In: Vasil, I. K., ed. Perspectives in plant cell and tissure culture, Int. Rev. Cytol., Suppl. 11A. New York: Academic Press; 1980:71–111.

    Google Scholar 

  33. Thorpe, T. A. In vitro somatic embryogenesis. ISI atlas of science: Animal and Plant Science. 1:81–88; 1988.

    Google Scholar 

  34. Thorpe, T. A.; Murashige, T. Some histochemical changes underlying shoot initiation in tobacco callus cultures. Can. J. Bot. 48:277–285; 1970.

    Article  CAS  Google Scholar 

  35. Tulecke, W.; McGranahan, G. Somatic embryogenesis and plant regeneration from cotyledons of walnut,Juglans regia L. Plant Sci. 40:57–63; 1985.

    Article  Google Scholar 

  36. Viéitez, A. M.; Ballester, A.; García, M. T., et al. Starch depletion and anatomical changes during the rooting ofCastanea sativa Mill. cuttings. Sci. Hortic. 13:261–266; 1980.

    Article  Google Scholar 

  37. Wann, S. R. Somatic embryogenesis in woody species. Hortic. Rev. 10:153–181; 1988.

    Google Scholar 

  38. Williams, E. G.; Maheswaran, G. Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann. Bot. 57:443–462; 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plata, E., Ballester, A. & Vieitez, A.M. An anatomical study of secondary embryogenesis inCamellia reticulata . In Vitro Cell Dev Biol - Plant 27, 183–189 (1991). https://doi.org/10.1007/BF02632214

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02632214

Key words

Navigation