Skip to main content
Log in

Recovery and evaluation of soybean plants transgenic for aBacillus thuringiensis var.Kurstaki insecticidal gene

  • Genetic Transformation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Lepidopteran insects are major defoliating pests of soybean in the southeastern United States. Soybean plants transgenic for a nativecryIA(b) gene fromBacillus thuringiensis var.kurstaki HD-1 were obtained. Embryogenic cultures were induced by plating cotyledons on a Murashige and Skoog-based medium supplemented with 40 mg/liter of 2,4-dichlorophenoxyacetic acid (2,4-D). The embryogenic cultures were maintained in liquid medium containing 5 mg/liter 2,4-D. These cultures were subjected to microprojectile bombardment, followed by selection on 50 mg/liter hygromycin. Resistant embryogenic cell lines were transferred to growth regulator-free medium to permit recovery of mature somatic embryos. After a desiccation period, the somatic embryos were returned to growth regulator-free medium for conversion into plants. Southern hybridization analysis verified transformation. Feeding assays of T1 plants from one cell line deterred feeding, development, and survival of velvetbean caterpillar at a level comparable to that of GatIR81-296, a soybean breeding line with a high level of insect resistance. Reduced feeding on T1 plants correlated with the presence of the transgene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adang, M. J.; Brody, M. S.; Cardineau, G., et al. The construction and expression of aBacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Mol. Bol. 21:1131–1145; 1993.

    Article  CAS  Google Scholar 

  2. Adang, M. J.; DeBoer, D.; Endres, J., et al. Manipulation ofBacillus thuringiensis genes for pest control. In: Roberts, D. W.; Granandos, R. R., eds. Biotechnology, biological pesticides, and novel plantpest resistance for insect pest management. Ithaca, NY: Cornell University; 1988:31–37.

    Google Scholar 

  3. Adang, M. J.; Idler, K. F.; Rocheleau, A. Structural and antigenic relationship among three crystal proteins ofBacillus thuringiensis subsp.kurstaki. In: Maramorosch, K., ed. Biotechnology in invertebrate pathology and cell culture. New York: Academic Press, Inc.; 1987.

    Google Scholar 

  4. Bailey, M. A.; Boerma, H. R.; Parrott, W. A. Genotype effects on proliferative embryogenesis and plant regeneration of soybean. In Vitro Cell. Dev. Biol. 29P:102–108; 1993.

    Google Scholar 

  5. Barton, K. A.; Whitely, H. R.; Yang, N.-S.Bacillus thuringiensis deltaendotoxin expressed in transgenicNicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85:1103–1109; 1987.

    PubMed  CAS  Google Scholar 

  6. Beach, R. M.; Todd, J. W. Resistance of the soybean breeding line GatIR 81-296 to foliar feeding by threeSpodoptera sp. J. Agric. Entomol. 4:193–199; 1987.

    Google Scholar 

  7. Beach, R. M.; Todd, J. W. Foliage consumption and developmental parameters of the soybean looper and the velvetbean caterpillar (Lepidoptera: Noctuidae) reared on susceptible and resistant soybean genotypes. J. Econ. Entomol. 81:310–316; 1988.

    Google Scholar 

  8. Benedict, J. H.; Altman, D. W.; Umbeck, P. F., et al. Behavior, growth, survival, and plant injury byHeliothis virescens (F.) (Lepidoptera: Noctuidae) on transgenicBt cottons. J. Econ. Entomol. 85:589–593; 1992.

    Google Scholar 

  9. Benedict, J. H.; Sachs, E. S.; Altman, D. W., et al. Impact of δ-endotoxin-producing transgenic cotton on insect-plant interactions withHeliothis virescens andHelicoverpa zea (Lepidoptera: Noctuidae). Environ. Entomol. 22:1–9; 1993.

    CAS  Google Scholar 

  10. Brattsten, L. B. Bioengineering of crop plants and resistant biotype evolution in insects: counteracting coevolution. Arch. Ins. Bioch. Physiol. 17:353–267; 1991.

    Google Scholar 

  11. Breyne, P.; Van Montagu, M.; Depicker, A., et al. Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression. Plant Cell 4:463–471; 1992.

    Article  PubMed  CAS  Google Scholar 

  12. Carozzi, N. B.; Warren, G. W.; Desai, N., et al. Expression of a chimeric CaMV 35SBacillus thuringiensis insecticidal protein gene in transgenic tobacco. Plant Mol. Biol. 20:539–548; 1992.

    Article  PubMed  CAS  Google Scholar 

  13. Chang, H.-H.; Chan, M.-T.Agrobacterium tumefaciens-mediated transformation of soybean (Glycine max (L.) Merr.) is promoted by the inclusion of potato suspension culture. Bot. Bull. Acad. Sin. 32:171–178; 1991.

    CAS  Google Scholar 

  14. Chee, P. P.; Fober, K. A.; Slightom, J. L. Transformation of soybean (Glycine max) by infecting germinating seeds withAgrobacterium tumefaciens. Plant Physiol. 91:1212–1218; 1989.

    Article  PubMed  CAS  Google Scholar 

  15. Cheng, J.; Bolyard, M. G.; Saxena, R. C., et al. Production of insect resistant potato by genetic transformation with a δ-endotoxin gene fromBacillus thuringiensis varkurstaki. Plant Sci. 81:83–91; 1992.

    Article  CAS  Google Scholar 

  16. Christou, P. Morphological description of transgenic soybean chimeras created by the delivery, integration and expression of foreign DNA using electric discharge particle acceleration. Ann. Bot. 66:379–386; 1990.

    CAS  Google Scholar 

  17. Christou, P. Soybean transformation by electric discharge particle acceleration. Physiol. Plant 79:210–212; 1990.

    Article  CAS  Google Scholar 

  18. Christou, P.; McCabe, E. Prediction of germ-line transformation events in chimeric R0 transgenic soybean plantlets using tissue-specific expression patterns. Plant J. 2:283–290; 1992.

    Article  CAS  Google Scholar 

  19. Christou, P.; McCabe, D. E.; Martinell, B. J., et al. Soybean genetic engineering—commercial production of transgenic plants. Trends Biotech. 8:145–151; 1990.

    Article  CAS  Google Scholar 

  20. Christou, P.; Swain, W. F.; Yang, N. S., et al. Inheritance and expression of foreign genes in transgenic soybean plants. Proc. Natl. Acad. Sci. USA 86:7500–7504; 1989.

    Article  PubMed  CAS  Google Scholar 

  21. Delannay, X.; LaVallee, J.; Proksch, K., et al. Field performance of transgenic tomato plants expressing theBacillus thuringiensis var.kurstaki insect control protein. Bio/Technology. 7:1265–1269; 1989.

    Google Scholar 

  22. Feiltelson, J. S.; Payne, J.; Kim, L.Bacillus thuringiensis: insects and beyond. Bio/Technology 10:271–276; 1992.

    Article  Google Scholar 

  23. Finer, J. J.; McMullen, M. D. Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell. Dev. Biol. 27P:175–182; 1991.

    CAS  Google Scholar 

  24. Finer, J. J.; Nagasawa, A. Development of an embryogenic suspension culture of soybean (Glycine max Merrill). Plant Cell Tissue Organ Cult. 15:125–136; 1988.

    Article  CAS  Google Scholar 

  25. Firoozabady, E.; DeBoer, D. L.; Merlo, D. J., et al. Transformation of cotton (Gossypium hirsutum L.) byAgrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol. Biol. 10:105–116; 1987.

    Article  CAS  Google Scholar 

  26. Fischoff, D. A.; Bowdish, K. S.; Perlak, F. J., et al. Insect tolerant transgenic tomato plants. Bio/Technology 5:807–813; 1987.

    Article  Google Scholar 

  27. Gamborg, O. L.; Miller, R. A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:150–158; 1968.

    Article  Google Scholar 

  28. Gordon-Kamm, W. J.; Spencer, T. M.; Mangano, M. L., et al. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618; 1990.

    Article  PubMed  CAS  Google Scholar 

  29. Hinchee, M. A. W.; Connor-Ward, D. V.; Newell, C. A., et al. Production of transgenic soybean plants usingAgrobacterium-mediated gene transfer. Bio/Technology 6:915–922; 1988.

    Article  CAS  Google Scholar 

  30. Hoffmann, M. P.; Zalom, F. G.; Wilson, L. T., et al. Field evaluation of transgenic tobacco containing genes encodingBacillus thuringiensis δ-endotoxin or cowpea trypsin inhibitor: Efficacy againstHelicoverpa zea (Lepidoptera: Noctuidae). J. Econ. Entomol. 85:2517–2522; 1992.

    Google Scholar 

  31. Hudson, R. D.; Jones, D. C.; McPherson, R. M. Soybean insects. In: Douce, G. K.; McPherson, R. M., eds. Special publication 70.: Georgia Agricultural Experiment Stations; 1991.

  32. Jenkins, J. N.; Parrott, W. L.; McCarty, J. C., Jr., et al. Growth and survival ofHeliothis virescens *Lepidoptera: Noctuidae) on transgenic cotton containing a truncated form of the delta endotoxin gene fromBacillus thuringiensis. J. Econ. Entomol. 86:181–185; 1993.

    Google Scholar 

  33. Kao, K. N. Staining methods for plant protoplasts and cells. In: Wetter, L. R.; Constabel, F., eds. Plant tissue culture methods. Saskatoon, Saskatchewan: Prairie Regional Laboratory of the National Research Council of Canada; 1982:67–71.

    Google Scholar 

  34. Keim, P.; Olson, T. C.; Shoemaker, R. C. A rapid protocol for isolating soybean DNA. Soybean Genet. Newslett. 15:150–152; 1988.

    Google Scholar 

  35. Kilby, N. J.; Leyser, H. M. O.; Furner, I. J. Promoter methylation and progressive transgene inactivation inArabidopsis. Plant Mol. Biol. 20:103–112; 1992.

    Article  PubMed  CAS  Google Scholar 

  36. Komatsuda, T.; Ohyama, K. Genotypes of high competence for somatic embryogenesis and plant regeneration in soybeanGlycine max. Theor. Appl. Genet. 75:695–700; 1988.

    Article  Google Scholar 

  37. Koziel, M. G.; Beland, G. L.; Bowman, C., et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived fromBacillus thuringiensis. Bio/Technology 11:194–200; 1993.

    Article  CAS  Google Scholar 

  38. Liu, B.-L.; Yue, S.-X.; Hu, N.-B., et al. Transfer of atrazine resistant gene from nightshade to soybean chloroplast genome and its expression in transgenic plants. Ch. Sci. Bull. 34:1670–1672; 1989.

    CAS  Google Scholar 

  39. Liu, B.-L.; Yue, S.-X.; Hu, N.-B., et al. Transfer of the atrazine-resistant gene of black nightshade to soybean chloroplast genome and its expression in transgenic plants. Sci. Chi. Ser. B. 33:444–452; 1990.

    CAS  Google Scholar 

  40. Luthy, P.; Ebersold, H. R.Bacillus thuringiensis delta endotoxin: Histopathology and molecular mode of action. In: Davison, E. W., ed. Pathogenesis of invertebrate microbial Diseases. Toronto: Allenheld; 1981:235–237.

    Google Scholar 

  41. Maniatis, T.; Fritsch, E. F.; Sambrook, J. Molecular cloning. A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1982.

    Google Scholar 

  42. McCabe, D. E.; Swain, W. F.; Martinell, B. J., et al. Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923–926; 1988.

    Article  Google Scholar 

  43. McCouch, S. R.; Kochert, G.; Yu, Z. H., et al. Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76:815–829; 1988.

    Article  CAS  Google Scholar 

  44. McGaughey, W. H.; Whalon, M. E. Managing insect resistance toBacillus thuringiensis toxins. Science 258:1451–1455; 1992.

    Article  CAS  PubMed  Google Scholar 

  45. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  46. Murray, E. E.; Rochleau, T. R.; Eberle, M., et al. Analysis of unstable RNA transcripts of insecticidal crystal protein genes ofBacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol. Biol. 16:1035–1060; 1991.

    Article  PubMed  CAS  Google Scholar 

  47. Perlak, F. J.; Deaton, R. W.; Armstrong, T. A., et al. Insect resistant cotton plants. Bio/Technology 8:939–943; 1990.

    Article  PubMed  CAS  Google Scholar 

  48. Portillo, H. E.; Pitre, H. N. Effect of four soybean genotypes on the development and fecundity ofHeliothis virescens andPseudoplusia includens (Lepidoptera: Noctuidae). Fl. Entomol. 75:386–390; 1992.

    Article  Google Scholar 

  49. Renckens, S.; De Greve, H.; Van Montagu, M., et al.Petunia plants escape from negative selection against a transgene by silencing the foreign DNA via methylation. Mol. Gen. Genet. 233:53–64; 1992.

    Article  PubMed  CAS  Google Scholar 

  50. Rufener, G. K., II.; St. Martin, S. K.; Cooper, R. L., et al. Genetics of antibiosis resistance to Mexican bean beetle in soybean. Crop Sci. 29:618–622; 1989.

    Article  Google Scholar 

  51. Stewart, C. N., Jr.; Via, L. E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Bio-Techniques 14:748–751; 1993.

    CAS  Google Scholar 

  52. Vaeck, M.; Reynaerts, A.; Höfte, H., et al. Transgenic plants protected from insect attack. Nature 238:33–37; 1987.

    Article  Google Scholar 

  53. Van Rie, J. Insect control with transgenic plants: resistance proof? Tibtech 9:177–179; 1991.

    Google Scholar 

  54. Warren, G. W.; Carozzi, N. D.; Desai, N., et al. Field evaluation of transgenic tobacco containing aBacillus thuringiensis insecticidal protein gene. J. Econ. Entomol. 85:1651–1659; 1992.

    CAS  Google Scholar 

  55. Wilson, F. D.; Flint, H. M.; Deaton, R. W., et al. Resistance of cotton lines containing aBacillus thuringiensis toxin to pink bollworm (Lepidoptera: Gelechiidae) and other insects. J. Econ. Entomol. 85:1516–1521; 1992.

    Google Scholar 

  56. Yang, Y.-S.; Wada, K.; Goto, M., et al.In vitro formation of nodular calli in soybean (Glycine max L.) induced by cocultivatedPseudomonas maltophilia. Jpn. J. Breed. 41:595–604; 1991.

    Google Scholar 

  57. Zhou, J. H.; Atherly, A. G. In situ detection of transposition of the maize controlling element (Ac) in transgenic soybean tissues. Plant Cell Rep. 8:542–545; 1990.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parrott, W.A., All, J.N., Adang, M.J. et al. Recovery and evaluation of soybean plants transgenic for aBacillus thuringiensis var.Kurstaki insecticidal gene. In Vitro Cell Dev Biol - Plant 30, 144–149 (1994). https://doi.org/10.1007/BF02632204

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02632204

Key words

Navigation