Skip to main content
Log in

Advances in plant biotechnology and their implication for forestry research

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Over the past few years, techniques of cell biology, genetic screening, and gene manipulation have been developed to the extent that their impact on commercial development of improved plant varieties is predicted to have a measurable impact on agriculture by the year 2000 and beyond. A review will be given of progress that has been made in each of these areas toward the manipulation of crop plants for improved field performance and product quality. There are now several opportunities in which these techniques can be employed for the improvement of forestry species. In the light of the long-time scales involved in the generation of forestry products, it is important to focus on targets that are worthwhile pursuing commercially using appropriate technical routes. Selected examples will be given of the application of plant biotechnology techniques that promise potentially significant improvement for forestry species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baulcombe, D. Strategies for virus resistance. Trend in Genetics 5:56–60; 1989.

    Article  CAS  Google Scholar 

  • Bekkaoui, F.; Datla, R. S. S.; Pilon, M., et al. The effects of promoter on transient expression in conifer cell lines. Theor. Appl. Genet. 79:353–359; 1990.

    Article  CAS  Google Scholar 

  • Bernatzky, R.; Tanksley, S. D. Towards a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887–898; 1986.

    PubMed  CAS  Google Scholar 

  • Botterman, J.; Leemans, J. Field testing of insect and herbicide resistant crops. Vortr. fur Pflanzenzuchtung 16:455–459; 1989.

    Google Scholar 

  • Christou, P.; Swain, W. F.; Yang, N-S., et al. Inheritance and expression of foreign genes in transgenic soybean plants. Proc. Natl. Acad. Sci. USA 86:7500–7504; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Comai, L.; Gacciotti, D.; Hiatt, W. R., et al. Expression in plants of a mutant aroA gene fromSalmonella typhimurium confers tolerance to glyphosate. Nature 317:741–744; 1985.

    Article  CAS  Google Scholar 

  • De Block, M.; Botterman, J.; Vandewiele, M., et al. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 9:251–258; 1987.

    Google Scholar 

  • de Greef, W.; Delon, R.; De Block, M., et al. Evaluation of herbicide resistance in transgenic crops under field conditions. Bio/Technology 7:61–64; 1989.

    Article  Google Scholar 

  • Delanney, X.; LaVallee, B. J.; Proksch, R. K., et al. Field performance of transgenic tomato plants expression theBacillus thuringiensis var.kurstaki insect control protein. Bio/Technology 7:1265–1269; 1989.

    Google Scholar 

  • Edwards, M. D.; Stuber, C. W.; Wendel, J. F. Molecular marker-facilitated investigations of quantitative-trait loci in maize. I. number, genomic distribution and types of gene action. Genetics 116:113–125; 1987.

    PubMed  CAS  Google Scholar 

  • Fischhoff, D. A.; Bowdish, K. S.; Perlak, F. J., et al. Insect tolerant transgenic tomato plants. Bio/Technology 5:807–813; 1987.

    Article  CAS  Google Scholar 

  • Gordon-Kramm, W. J.; Spencer, T. M.; Mangano, M. L., et al. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618; 1990.

    Article  Google Scholar 

  • Helentjaris, T.; Slocum, M.; Wright, S., et al. Construction of genetic link-age maps in maize and tomato using restriction fragment length polymorphisms. Theor. Appl. Genet. 72:761–769; 1986.

    Article  CAS  Google Scholar 

  • Hilder, V. A.; Gatehouse, A. M. R.; Sheerman, S. E., et al. A novel mechanism of insect resistance engineered into tobacco. Nature 330:160–163; 1987.

    Article  CAS  Google Scholar 

  • Hoefte, H.; Whiteley, H. R. Insecticidal crystal proteins ofBacillus thuringiensis. Microbiol. Rev. 53:242–255; 1989.

    Google Scholar 

  • Horsch, R. B.; Fry, J. E.; Hoffman, N., et al. A simple and general method for transferring genes into plants. Science 227:1229–1231; 1985.

    Article  CAS  Google Scholar 

  • Klee, H.; Horsch, R.; Rogers, S.Agrobacterium-mediated plant transformation and its further applications to plant biology. Ann. Rev. Plan. Physiol. 38:467–486; 1987.

    Article  CAS  Google Scholar 

  • Klein, T. M.; Wolf, E. D.; Wu, R., et al. High velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73; 1987.

    Article  CAS  Google Scholar 

  • Lee, K. Y.; Townsend, J.; Tepperman, J., et al. The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J. 7:1241–1248; 1988.

    PubMed  CAS  Google Scholar 

  • Li, Z.; Burow, M. D.; Murai, N. High frequency generation of fertile transgenic rice plants after PEG-mediated protoplast transformation. Plant Mol. Biol. Rep. 8:276–291; 1990.

    Google Scholar 

  • Loopstra, C. A.; Stomp, A. M.; Sederoff, R. R.Agrobacterium-mediated DNA transfer in sugar pine. Plant Mol. Biol. 15:1–9; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Mariani, C.; De Beuckeleer, M.; Truettner, J., et al. Induction of male sterility in plants by a chimearic ribonuclease gene. Nature 347:737–741; 1990.

    Article  CAS  Google Scholar 

  • Mazur, B. J.; Falco, S. C. The development of herbicide resistant crops. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40:441–470; 1989.

    Article  CAS  Google Scholar 

  • Martin, B.; Nienhuis, J.; King, G., et al. Restriction fragment length polymorphisms associated with water use efficiency in tomato. Science 243:1725–1728; 1989.

    Article  CAS  Google Scholar 

  • Nelson, R. S.; McCormick, S. M.; Delannay, X., et al. Virus tolerance, plant growth, and field performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus. Bio/Technology 6:403–409; 1988.

    Article  Google Scholar 

  • Padgette, S. R.; Hai Huyni, Q.; Borgmeyer, J., et al. Bacterial expression and isolation of petunia-hybrida 5-enol-pyruvylshikimate 3-phosphate synthase. Arch. Biochem. Biophys. 258:564–573; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Paterson, A. H.; Lander, E. S.; Hewitt, J. D., et al. Resolution of quantitative traits into mendelian factors using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski, J.; Shillito, R. D.; Saul, M., et al. Direct gene transfer to plants. EMBO J. 3:2717–2722; 1984.

    PubMed  CAS  Google Scholar 

  • Powell Abel, P.; Nelson, R. S.; De, B., et al. Delay of disease development in transgenic tobacco plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743; 1986.

    Article  Google Scholar 

  • Schuch, W.; Kanczler, J.; Robertson, D., et al. Fruit quality parameters of transgenic fruit with altered polygalacturonase activity. Hort-Science. In press; 1991.

  • Smith, C. J. S.; Watson, C. F.; Ray, J., et al. Antisense RNA inhibition of polygalacturonase gene expression in tomatoes. Nature 334:724–726; 1988.

    Article  CAS  Google Scholar 

  • Smith, C. S. J.; Watson, C. F.; Morris, P. C., et al. Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Mol. Biol. 14:369–379; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Stalker, D. M.; McBurke, K. E.; Malyi, L. D. Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242:419–423; 1988.

    Article  CAS  Google Scholar 

  • Streber, W. R.; Willmitzer, L. Transgenic tobacco plants expressing a bacterial detoxifying enzyme are resistant to 2,4-D. Bio/Technology 7:811–816; 1989.

    Article  CAS  Google Scholar 

  • Tatham, A. S.; Shewry, P. R.; Miflin, B. J. Wheat gluten elasticity: a similar molecular basis to elastin. FEBS Lett. 177:205–208; 1984.

    Article  CAS  Google Scholar 

  • Tautorus, T. E.; Bekkaoui, F.; Pilon, M., et al. Factors affecting transient gene expression in electroporated black spruce and jack pine. Theor. Appl. Genet. 78:531–536; 1989.

    Article  Google Scholar 

  • Vaeck, M.; Reynaerts, A.; Hoefte, H., et al. Transgenic plants protected from insect attack. Nature 328:33–37; 1987.

    Article  CAS  Google Scholar 

  • van der Krol, A. R.; Lenting, P. E.; Veenstra, J., et al. An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333:866–869; 1988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presented in the Keynote address Toward the Forest of Tomorrow at the 5th Meeting of the Conifer Biotechnology Working Group, Siltingbourne, England, July 8–13, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuch, W. Advances in plant biotechnology and their implication for forestry research. In Vitro Cell Dev Biol - Plant 27, 99–103 (1991). https://doi.org/10.1007/BF02632191

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02632191

Key words

Navigation