Skip to main content
Log in

Development of white spruce somatic embryos: I. Storage product deposition

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

The growth and development of white spruce somatic embryos was followed from the filamentous immature to the mature cotyledonary embryo stage. Histochemical examination of the various stages of embryo development showed that lipids, proteins, and polysaccharides were produced to varying degrees during the process. During early stages (1 to 2 wk on ABA), mostly polysaccharide was produced, whereas during later stages, polysaccharides, lipids, and protein accumulated. Electron microscopy indicated that lipid deposition in somatic embryos started during the first week after transfer to ABA-containing medium. Deposition of the storage products began at the basal end of the embryonal mass and within the proximal zone of the suspensors. Accumulation continued to the peripheral regions and then inward toward the cortex of the developing embryo. In all cases, polysaccharide accumulated first, followed by lipid and lastly, protein. Quantitatively, cotyledonary stage somatic embryos had less lipid and protein and more starch when compared to zygotic embryos at the same developmental stage. Total protein profiles elucidated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the majority of proteins were similar in zygotic and somatic embryos. Prominent protein bands were found at 30, 20, 19.5, 15, 14.4, 12, and 10 Kd. However, protein bands at 40, 15, and 12 Kd in total protein from somatic embryos were either absent or highly underexpressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buchholz, J. T. Suspensor and early embryo of pines. Bot. Gaz. 66:185–233; 1918.

    Article  Google Scholar 

  • Clutter, M.; Brady, T.; Walbot, V., et al. Macromolecular synthesis during plant embryogeny. Cellular rates of RNA synthesis in diploid and polytene cells in bean embryos. J. Cell Biol. 63:1097–1102; 1974.

    Article  PubMed  CAS  Google Scholar 

  • Dubois, M.; Billes, K. A.; Hamilton, J. K., et al. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350–356; 1956.

    Article  CAS  Google Scholar 

  • Dunstan, D. I. Prospects and progress in conifer biotechnology. Can. J. For. Res. 18:1497–1506; 1988.

    Google Scholar 

  • Durzan, D. J. Physiological states and metabolic phenotypes in embryonic development. In: Bonga, J. M.; Durzan, D. J., eds. Cell and tissue culture in Forestry, vol. 2, Boston, Dordrecht; Martinus-Nijhoff Pubs. 1987:405–439.

    Google Scholar 

  • Feirer, R. P.; Conkey, J. H.; Verhagen, S. A. Triglycerides in embryogenic conifer calli: a comparison with zygotic embryos. Plant Cell Rep. 8:207–209; 1989.

    Article  CAS  Google Scholar 

  • Finkelstein, R. R.; Crouch, M. L. Rapeseed embryo development in culture on high osmoticum is similar to that in seeds. Plant Physiol. 81:907–912; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, R. R.; Somerville, C. Abscisic acid or high osmoticum promote accumulation of long-chain fatty acids in developing embryos ofBrassica napus. Plant Science 61:213–217; 1989.

    Article  CAS  Google Scholar 

  • Gifford, D. J.; Tolley, M. C. The seed proteins of white spruce and their mobilization following germination. Physiol. Plant. 77:254–261; 1989.

    Article  CAS  Google Scholar 

  • Hakman, I. Somatic embryogenesis in Norway spruce (Picea abies). 4th International Conifer Tissue Culture Work Group, Aug. 8–12, 1988, Saskatoon, Sask., Canada, Abstr.

  • Hakman, I.; Rennie, P.; Fowke, L. A light and electron microscope study ofPicea glauca (white spruce) somatic embryos. Protoplasma 140:100–109; 1987.

    Article  Google Scholar 

  • Hakman, I.; Fowke, L. C. Somatic embryogenesis inPicea glauca (white spruce) andPicea mariana (black spruce). Can. J. Bot. 65:656–659; 1987.

    Google Scholar 

  • Hakman, I.; von Arnold, S. Somatic embryogenesis and plant regeneration from suspension cultures onPicea glauca (white spruce). Physiol. Plant. 72:579–587; 1988.

    CAS  Google Scholar 

  • Hosie, R. C. Native trees of Canada. Eighth ed., Fitzhenry and Whiteside Pubs. Ltd., Don Mills, Ontario. 64; 1979.

    Google Scholar 

  • Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Lu, C-Y.; Thorpe, T. A. Somatic embryogenesis and plantlet regeneration in cultured immature embryos ofPicea glauca. J. Plant Physiol. 128:297–302; 1987.

    CAS  Google Scholar 

  • Maheshwari, P. An introduction to the embryology of angiosperms. New York, McGraw Hill; 1950.

    Google Scholar 

  • McCready, R. M.; Guggolz, J.; Silviera, V., et al. Determination of starch and amylase in vegetables. Anal. Chem. 22:1156–1158; 1950.

    Article  CAS  Google Scholar 

  • Misra, S.; Green, M. J. Developmental gene expression in conifer embryogenesis and germination. I. Seed proteins and protein body composition of mature embryo and the megagametophyte of white spruce (Picea glauca [Moench] voss.). Plant Sci. 68:163–173; 1990.

    Article  CAS  Google Scholar 

  • Owens, J. N.; Molder, M. The reproductive cycle of Interior spruce. Province of British Columbia, Ministry of Forests, Information Services Branch, Victoria. 1984.

    Google Scholar 

  • Reynolds, E. S. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17:208–212; 1963.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, D. R.; Flinn, B. S.; Webb, D. T., et al. Abscisic acid and indole-3-butyric acid regulation of maturation and accumulation of storage proteins in somatic embryos of interior spruce. Physiol. Plant. 78:355–360; 1990.

    Article  CAS  Google Scholar 

  • Roberts, D. R.; Flinn, B. S.; Webb, D. T. Characterization of immature embryos of interior spruce by SDS-PAGE and microscopy in relation to their competence for somatic embryogenesis. Plant Cell Rep. 8:285–288; 1989.

    Article  CAS  Google Scholar 

  • Singh, H. Embryology of gymnosperms. Encyclopedia of Plant Anatomy, vol 0, pt. 2. Gerbruder Borntraeger, Berlin; 1978.

    Google Scholar 

  • Spector, T. Refinement of the coomassie blue method of protein quantitation. Anal. Biochem. 86:142–146; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Sussex, I.; Clutter, M.; Walbot, V., et al. Biosynthetic activity of the suspensor ofPhaseolus coccineus. Caryologia 25 Suppl., 261–272; 1973.

    Google Scholar 

  • von Arnold, S.; Eriksson, T. In vitro studies of adventitious shoot formation inPinus contorta. Can. J. Bot. 59:870–874; 1981.

    Google Scholar 

  • von Arnold, S.; Hakman, I. Regulation of somatic embryo development inPicea abies by abscisic acid (ABA). J. Plant Physiol. 132:164–169; 1988.

    Google Scholar 

  • Walbot, V.; Brady, T.; Clutter, M., et al. Macromolecular synthesis during plant embryogeny: Rates of RNA synthesis inPhaseolus coccineus embryos and suspensors. Develop. Biol. 29:104–111; 1972.

    Article  PubMed  CAS  Google Scholar 

  • Walthall, E. D.; Brady, T. The effect of the suspensor and gibberellic acid ofPhaseolus vulgaris embryo protein synthesis. Cell Differ. 18:37–44; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Yeung, E. C. Embryogeny ofPhaseolus: the role of the suspensor. Z. Pflanzenphysiol. 96:17–28; 1980.

    Google Scholar 

  • Yeung, E. C. Histological and histochemical staining procedures. In: Vasil, I. K. ed. Cell culture and somatic cell genetics of plants. Orlando, FL: Academic Press; 1984:689–697.

    Google Scholar 

  • Yeung, E. C. A simple procedure to visualize osmicated storage lipids in semithin epoxy sections of plant tissues. Stain Technol. 65:45–47; 1990.

    PubMed  CAS  Google Scholar 

  • Yeung, E. C.; Law, S. Serial sectioning techniques for a modified LKB historesin. Stain Technology 62:147–153; 1987.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joy, R.W., Yeung, E.C., Kong, L. et al. Development of white spruce somatic embryos: I. Storage product deposition. In Vitro Cell Dev Biol - Plant 27, 32–41 (1991). https://doi.org/10.1007/BF02632059

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02632059

Key words

Navigation