Skip to main content
Log in

Heparin-binding (fibroblast) growth factors are potential autocrine regulators of esophageal epithelial cell proliferation

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

A serum-free culture system supplemented with neural tissue extract for normal and tumor human esophagi was applied to the culture of mouse esophageal epithelium. Similar to mouse mesenchyme and skin epithelium, esophageal epithelial lines (MEE) emerged after serial culture. The cells had an apparent unlimited life span but retained morphology and other characteristics of normal epithelial cells. The cells formed a small cyst consisting of keratined squamous epithelium in syngenic hosts. A screen for growth factors that stimulated growth of the nonmalignant MEE cells in the absence of neural extract revealed that epidermal growth factor (EGF) and heparin-binding (fibroblast) growth factors (HBGF) were most effective. An HBGF-like activity was apparent in extracts of rapidly proliferating but not quiescent MEE cells at low or confluent densities. A cloned cell line (MEE/C8) was selected from MEE cell cultures in the absence of neural extract. MEE/C8 cells proliferated independent of either EGF or HBGF at rates equal to MEE cells, cell extracts exhibited HBGF-like activity at all stages of proliferation, and the cells formed large invasive tumors in syngenic hosts. The HBGF-like activity present in extracts of tumorigenic MEE/C8 and proliferating nonmalignant MEE cells had properties similar to HBGF-1 (acidic fibroblast growth factor). These results constitute a cultured mouse esophageal epithelial cell model for study of conversion of immortalized premalignant cells to malignant cells, and suggest that conversion from a state of cell cycle-dependent autocrine expression of one or more members of the HBGF family to a state of constitutive expression correlates with and may contribute to malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson, S. A.; Todaro, G. J. Development of 3T3-like lines from BALB/c mouse embryo cultures: transformation susceptibility to SV40. J. Cell. Physiol. 72:141–148; 1968.

    Article  PubMed  CAS  Google Scholar 

  2. Abraham, J. A.; Mergia, A.; Whang, J. L., et al. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 233:545–548; 1986.

    Article  PubMed  CAS  Google Scholar 

  3. Aclaud, P.; Dixon, M.; Peters, G., et al. Subcellular fate of the Int-2 oncoprotein is determined by choice of initiation codon. Nature 343:662–665; 1990.

    Article  Google Scholar 

  4. Akaishi, T.; Sekine, Y.; Sanekata, K., et al. Characteristics of growth and effectiveness of anti-cancer drugs on tissue cultured human esophageal cancer cells. In: Kasai, M., ed. Esophageal cancer. Proceedings of the international symposium on cancer of esophagus. Princeton, NJ: Excerpta Medica, 1986:35–38.

    Google Scholar 

  5. Banks-Schlegel, S. P. Growth and differentiation of human esophageal carcinoma cell lines. Cancer Res. 46:250–258; 1986.

    PubMed  CAS  Google Scholar 

  6. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  7. Burgess, W. H.; Maciag, T. The heparin-binding (fibroblast) growth factor family of proteins. Annu. Rev. Biochem. 58:575–606; 1989.

    Article  PubMed  CAS  Google Scholar 

  8. Carpenter, G. Epidermal growth factor. Ann. Rev. Biochem. 48:193–216; 1979.

    Article  PubMed  CAS  Google Scholar 

  9. Coffey, R. J., Jr.; Derynck, R.; Wilcox, J. N., et al. Production and auto-induction of transforming growth factor-α in human keratinocytes. Nature 328:817–820; 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Coffey, R. J., Jr.; Sipes, N. J.; Bascom, C. C., et al. Growth modulation of mouse keratinocytes by transforming growth factors. Cancer Res. 48:1596–1602; 1988.

    PubMed  CAS  Google Scholar 

  11. Cook, P. W.; Coffey, R. J.; Magun, B. E., Jr. et al. Expression and regulation of mRNA coding for acidic and basic fibroblast growth factor and transforming growth factorα in cells derived from human skin. Mol. Endocrinol. 4:1377–1385; 1990.

    PubMed  CAS  Google Scholar 

  12. Crabb, J. W. Armes, L. G.; Carr, S. A., et al. Complete primary structure of prostatropin, a prostate epithelial cell growth factor. Biochemistry 25:4988–4993; 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Crabb, J. W.; Armes, L. G.; Johnson, C. M., et al. Characterization of multiple forms of prostatropin (prostate epithelial cell growth factor) from bovine brain. Biochem. Biophys. Res. Commun. 136:1155–1161; 1986.

    Article  PubMed  CAS  Google Scholar 

  14. Day, N. E. Some aspects of the epidemiology of esophageal cancer. Cancer Res. 35:3304–3307; 1975.

    PubMed  CAS  Google Scholar 

  15. Finch, P. W.; Rubin, J. S.; Miki, T., et al. Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science 245:752–755; 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Gospodarowicz, D.; Ploüet, J.; Malerstein, B. Comparison of the ability of basic and acidic fibroblast growth factor to stimulate the proliferation of an established keratinocyte cell line: modulation of their biological effects by heparin, transforming growth factorβ (TGFβ), and epidermal growth factor (EGF). J. Cell. Physiol. 142:325–333; 1990.

    Article  PubMed  CAS  Google Scholar 

  17. Hoshi, H.; Kan, M. Growth factor assays for normal human hepatocytes and hepatoma cells. J. Tissue Cult. Methods 10:83–92; 1986.

    Article  Google Scholar 

  18. Hou, J.; Kan, M.; McKeehan, K., et al. Fibroblast growth factor receptors from liver vary in three structural domains. Science. 251:665–668; 1991.

    Article  PubMed  CAS  Google Scholar 

  19. Imamura, T.; Engllka, K.; Zhan, X., et al. Recovery of a mitogenic activity of a growth factor mutant with a nuclear translocation sequence. Science 249:1567–1570; 1990.

    Article  PubMed  CAS  Google Scholar 

  20. Jaye, M.; Howk, R.; Burgess, W., et al. Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosome localization. Science 233:541–545; 1986.

    Article  PubMed  CAS  Google Scholar 

  21. Kaighn, M. E.; Camalier, R. F.; Bertolero, F., et al. Spontaneous establishment and characterization of mouse keratinocyte cell lines in serum-free medium. In Vitro Cell. Devel. Biol. 4:845–854; 1988.

    Article  Google Scholar 

  22. Kan, M.; DiSorbo, D.; Hou, J., et al. High and low affinity binding of heparin-binding growth factor to a 130-kDa receptor correlates with stimulation and inhibition of growth of a differentiated human hepatoma cell. J. Biol. Chem. 263:11306–11313; 1988.

    PubMed  CAS  Google Scholar 

  23. Kan, M.; Huang, J.; Mansson, P.-E., et al. Heparin-binding growth factor type 1 (acidic fibroblast growth factor): a potential biphasic autocrine and paracrine regulator of hepatocyte regeneration. Proc. Natl. Acad. Sci. USA 86:7432–7436; 1989.

    Article  PubMed  CAS  Google Scholar 

  24. Kan, M.; Yamane, I.In vitro proliferation and lifespan of human diploid fibroblasts in serum-free BSA-containing medium. J. Cell Physiol. 111:155–162; 1982.

    Article  PubMed  CAS  Google Scholar 

  25. Katayama, M.; Akaishi, T.; Nishihira, T., et al. Primary cultures and serial passages of normal esophageal epithelial cells in a serum-free medium. In: Kasai, M., ed. Esophageal cancer. Proceedings of the international symposium on cancer of the esophagus. Princeton, NJ: Excerpta Medica, 1986:31–34.

    Google Scholar 

  26. Katayama, M.; Akaishi, T.; Nishihira, T., et al. Primary culture of human esophageal epithelial cells. Tohoku J. Exp. Med. 143:129–140; 1984.

    Article  PubMed  CAS  Google Scholar 

  27. Mansson, P.-E.; Adams, P.; Kan, M., et al. Heparin-binding growth factor gene expression and receptor characteristics in normal rat prostate and two transplantable rat prostate tumors. Cancer Res. 49:2485–2494; 1989.

    PubMed  CAS  Google Scholar 

  28. McBeath, E.; Fujiwara, K. Improved fixation for immunofluorescence microscopy using light-activated 1,3,5-triazido-2,4,6-trinitrobenzene (TTB). J. Cell Biol. 99:2061–2073; 1984.

    Article  PubMed  CAS  Google Scholar 

  29. McKeehan, W. L.; Adams, P. S. Heparin-binding growth factor/prostatropin attenuates inhibition of rat prostate tumor epithelial cell growth by transforming growth factor type beta. In Vitro Cell. Dev. Biol. 24:243–246; 1988.

    Article  PubMed  CAS  Google Scholar 

  30. McKeehan, W. L.; Adams, P. S.; Rosser, M. P. Director mitogenic effects of insulin, epidermal growth factor, glucocorticoid, cholera toxin, unknown pituitary factors and possibly prolactin, but not androgen, on normal rat prostate epithelial cells in serum-free, primary cell culture. Cancer Res. 44:1998–2010; 1984.

    PubMed  CAS  Google Scholar 

  31. McKeehan, W. L.; Crabb, J. W. Isolation and characterization of different molecular and chromatographic forms of heparin-binding growth factor 1 from bovine brain. Anal. Biochem. 164:563–569; 1987.

    Article  PubMed  CAS  Google Scholar 

  32. Pera, M. F.; Gorman, P. A.In vitro analysis of multistage epidermal carcinogenesis: development of indefinite renewal capacity and reduced growth factor requirements in colony forming keratinocytes precedes malignant transformation. Carcinogenesis 5:671–682; 1984.

    Article  PubMed  CAS  Google Scholar 

  33. Renko, M.; Quarto, N.; Morimoto, T., et al. Nuclear and cytoplasmic localization of different basic fibroblast growth factor species. J. Cell. Physiol. 144:108–114; 1990.

    Article  PubMed  CAS  Google Scholar 

  34. Rubin, J. S.; Osada, H.; Finch, P. W., et al. Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc. Natl. Acad. Sci. USA 86:802–806; 1989.

    Article  PubMed  CAS  Google Scholar 

  35. Shipley, G. D.; Keeble, W. W.; Hendrickson, J. E., et al. Growth of normal human keratinocytes and fibroblasts in serum-free medium is stimulated by acidic acid and basic fibroblast growth factors. J. Cell. Physiol. 138:511–518; 1988.

    Article  Google Scholar 

  36. Silverberg, E.; Boring, C. C.; Squires, T. S. Cancer statistics, 1990. CA Cancer J. Clin. 40:9–26; 1990.

    PubMed  CAS  Google Scholar 

  37. Sporn, M. B.; Todaro, G. J. Autocrine secretion and malignant transformation of cells. N. Engl. J. Med. 303:878–880; 1980.

    Article  PubMed  CAS  Google Scholar 

  38. Weissman, B. E.; Aaronson, S. A. BALB and kirsten murine sarcoma viruses alter growth and differentiation of EGF-dependent BALB/c mouse epidermal keratinocyte lines. Cell 32:599–606; 1983.

    Article  PubMed  CAS  Google Scholar 

  39. Yoshida, K.; Kyo, E.; Tsuda, T., et al. EGF and TGF-α, the ligands of hyperproduced EGFR in human esophageal carcinoma cells, act as autocrine growth factors. Int. J. Cancer 45:131–135; 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work was supported in part by grants CA37589 and DK35310 to Dr. McKeehan, from the National Cancer Institute, Bethesda, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katayama, M., Kan, M. Heparin-binding (fibroblast) growth factors are potential autocrine regulators of esophageal epithelial cell proliferation. In Vitro Cell Dev Biol - Animal 27, 533–541 (1991). https://doi.org/10.1007/BF02631283

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631283

Key words

Navigation