Skip to main content
Log in

Factors that influence the development of cultured neurons from the brain of the mothManduca sexta

  • Session-In-Depth—Growth Factors In Invertebrates; Cellular And Molecular Approaches
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

During metamorphic adult development, neurons and glial cells in the developing olfactory (antennal) lobes of the moth undergo characteristic and extensive changes in shape. These changes depend on an interplay among these two cell types and ingrowing sensory axons. All of the direct cellular interactions occur against a background of changing steroid hormone titers. Antennal-lobe (AL) neurons dissociated from stage-5 (of 18 stages) metamorphosing animals survive at least 3 wk in primary cell culture. We describe here the morphological influences on AL neurons of (1) exposure to the steroid hormone 20-hydroxyecdysone, (2) exposure to sensory axons, and (3) interactions among the AL neurons. Cultured AL neurons respond only weakly, if at all, to 20-hydroxyecdysone. They do, however, show greater total outgrowth and branching when they had been exposed in vivo to sensory axons. Because there is no direct contact between some of the neuronal types and the sensory axons at the time of dissociation, the increase in outgrowth must have been mediated via a diffusible factor(s). When AL cells (neurons and glia) are plated at high density in low volumes of medium, or when the cells are plated at low density but in the presence of medium conditioned by high-density cultures, neurite outgrowth and cell survival are increased. Nerve growth factor (NGF), epidermal growth factor (EGF), fibroblast growth factor-basic (bFGF), transforming growth factor-β (TGF β ) and insulin-like growth factor (ILGF) had no obvious effect on neuronal morphology and thus are unlikely to underlie these effects. Our results suggest that the mature shape of AL neurons depends on developmental interactions among a number of diffusible factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banerjee, U.; Zipursky, S. L. The role of cell-cell interaction in the development of theDrosophila visual system. Neuron 4:177–187; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Bastiani, M. J.; Doe, C. Q.; Helfand, S. L.; Goodman, C. S. Neuronal specificity and growth cone guidance in grasshopper andDrosophila embryos. TINS 8:257–266; 1985.

    Google Scholar 

  • Hayashi, I.; Perez-Magallanes, M.; Rossi, J. M. Neurotrophic factor-like activity inDrosophila. Biochem. Biophys. Res. Comm. 184:73–79; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand, J. G.; Hall, L. M.; Osmond, B. C. Distribution of binding sites for125I-labeledα-bungarotoxin in normal and deafferented antennal lobes ofManduca sexta. Proc. Natl. Acad. Sci. 76:499–503; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Homberg, U.; Montague, R. A.; Hildebrand, J. G. Anatomy of the antennocerebral pathways in the brain of the sphinx mothManduca sexta. Cell. Tiss. Res. 254:255–281; 1988.

    Article  CAS  Google Scholar 

  • Horvitz, H. R. Neuronal cell lineages in the nematodeCaenorhabditis elagans. In: Garrod, D. and Feldman, J., eds. Development of the nervous system. Cambridge: Cambridge University Press; 1981: 331–345.

    Google Scholar 

  • Johnson, E. M.; Rich, K. M.; Yip, H. K. The role of NGF in sensory neurons in vivo. TINS 9:33–37; 1986.

    CAS  Google Scholar 

  • Levine, R. B.; Weeks, J. C. Reorganization of neural circuits and behavior during insect metamorphosis. In: Kelly D., Carew T., eds. Perspectives in Neural Systems and Behavior. New York: Alan R. Liss, 1989:195–228.

    Google Scholar 

  • Malun, D.; Oland, L. A.; Tolbert, L. P. Do uniglomerular output neurons participate in forming the template for olfactory glomeruli in the moth? Soc. Neurosci. Abst. 19:443; 1993.

    Google Scholar 

  • Matsumoto, S. G.; Hildebrand, J. G. Olfactory mechanisms in the mothManduca sexta: response characteristics and morphology of central neurons in the antennal lobes. Proc. R. Soc. Lond. B 213:249–277; 1981.

    Article  CAS  Google Scholar 

  • Muskavitch, M. A. T.; Hoffmann, F. M. Homologs of vertebrate growth factors inDrosophila melanogaster and other invertebrates. Curr. Topics in Devel. Biol. 24:289–328; 1990.

    CAS  Google Scholar 

  • Oland, L. A.; Hayashi, J. H. Effect of the steroid hormone 20-hydroxyecdysone and prior sensory input on the survival and growth of moth central olfactory neurons in vitro. J. Neurobiol. 24:1170–1186; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Oland, L. A.; Oberlander, H. Growth and interactions of cells from the insect nervous system in vitro. In: Maramorosch, K.; McIntosh, A. H., eds. Insect Cell Biotechnology. 1994, in press.

  • Oland, L. A.; Orr, G.; Tolbert, L. P. Construction of a protoglomerular template by olfactory axons initiates the formation of olfactory glomeruli in the insect brain. J. Neurosci. 10:2096–2112; 1990.

    PubMed  CAS  Google Scholar 

  • Oland, L. A.; Tolbert, L. P. Glial patterns during early development of the antennal lobes ofManduca sexta: a comparison between normal lobes and lobes deprived of antennal axons. J. Comp. Neurol. 255:196–207; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Oland, L. A.; Tolbert, L. P. Effects of hydroxyurea parallel the effects of radiation in developing olfactory glomeruli in insects. J. Comp. Neurol. 278:377–387; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Oland, L. A.; Tolbert, L. P., Mossman, K. L. Radiation-induced reduction of the glial population during development disrupts the formation of olfactory glomeruli in the insect brain. J. Neurosci. 8:353–367; 1988.

    PubMed  CAS  Google Scholar 

  • Prugh, J.; Della Croce, K.; Levine, R. B. Effects of the steroid hormone. 20-hydroxyecdysome, on the grwoth of neurites by identified insect montoneurons in vitro. Dev. Biol. 154:331–347; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen, H.; Barde, Y.-A. Physiology of nerve growth factor. Physiol. Rev. 60:1284–1335; 1980.

    PubMed  CAS  Google Scholar 

  • Tolbert, L. P.; Sirianni, P. A. Requirement for olfactory axons in the induction and stabilization of olfactory glomeruli in an insect. J. Comp. Neurol. 298:69–82; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Truman, J. T. Hormonal approaches for studying nervous system development in insects. Adv. Insect Physiol. 21:1–34; 1988.

    Article  CAS  Google Scholar 

  • Warren, J. T.; Gilbert, L. I. Ecdysone metabolism and distribution during the pupal-adult development ofManduca sexta. Insect Biochem. 16:65–82; 1986.

    Article  CAS  Google Scholar 

  • Witten, J. L.; Levine, R. B. Cellular specificity of steroid influences on process outgrowth of identified motoneurons in culture. Soc. Neurosci. Abstr. 17:1320; 1991.

    Google Scholar 

  • Wolff, T.; Ready, D. F. In search of a role for growth factors inDrosophila eye development. Sem. Devel. Biol. 2:305–316; 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oland, L.A., Oberlander, H. Factors that influence the development of cultured neurons from the brain of the mothManduca sexta . In Vitro Cell Dev Biol - Animal 30, 709–716 (1994). https://doi.org/10.1007/BF02631275

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631275

Key words

Navigation