Skip to main content
Log in

Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

In the moth Manduca sexta, the number and morphology of neuronal connections between the antennal lobes and the protocerebrum were examined. Cobalt injections revealed eight morphological types of neurons with somata adjacent to the AL neuropil that project in the inner, middle, and outer antenno-cerebral tracts to the protocerebrum. Neurons innervating the macroglomerular complex and many neurons with fibers in the inner antennocerebral tract have uniglomerular antennal-lobe arborizations. Most neurons in the middle and outer antenno-cerebral tracts, on the other hand, seem to innervate more than one glomerulus. Protocerebral areas receiving direct input from the antennal lobe include the calyces of the mushroom bodies, and circumscribed areas termed “olfactory foci” in the lateral horn of the protocerebrum and several other regions, especially areas in close proximity to the mushroom bodies. Fibers in the inner antenno-cerebral tract that innervate the male-specific macroglomerular complex have arborizations in the protocerebrum that are distinct from the projections of sexually non-specific neurons. Protocerebral neurons projecting into the antennal lobe are much less numerous than antennal-lobe output cells. Most of these protocerebral fibers enter the antennal lobe in small fiber tracts that are different from those described above. In the protocerebrum, these centrifugal cells arborize in olfactory foci and also in the inferior median protocerebrum and the lateral accessory lobes. The morphological diversity of connections between the antennal lobes and the protocerebrum, described here for the first time on a single-cell level, suggests a much greater physiological complexity of the olfactory system than has been assumed so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247

    Google Scholar 

  • Arnold G, Masson C, Budharugsa S (1985) Comparative study of the antennal lobes and their afferent pathways in the worker bee and the drone (Apis mellifera). Cell Tissue Res 242:593–60

    Google Scholar 

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurones in wholemount preparations. Brain Res 138:359–363

    Google Scholar 

  • Bell RA, Joachim FA (1976) Techniques for rearing laboratory colonies of tobacco hornworms and pink bollworms. Ann Ent Soc Am 69:365–373

    Google Scholar 

  • Boeckh J, Boeckh V (1979) Threshold and odor specificity of pheromone-sensitive neurons in the deutocerebrum of Antheraea pernyi and A. polyphemus. J Comp Physiol 132:235–242

    Google Scholar 

  • Boeckh J, Ernst KD (1987) Contribution of single unit analysis in insects to an understanding of olfactory function. J Insect Physiol A 161:549–565

    Google Scholar 

  • Boeckh J, Ernst KD, Sass H, Waldow U (1984) Anatomical and physiological characteristics of individual neurons in the central antennal pathway of insects. J Insect Physiol 30:15–26

    Google Scholar 

  • Borst A (1984) Untersuchungen zur zentralnervösen Verarbeitung olfaktorischer Reize bei Drosophila melanogaster. PhD Dissertation, Universität Würzburg, FRG

    Google Scholar 

  • Boyan GS (1983) Postembryonic development in the auditory system of the locust. Anatomical and physiological characterization of interneurons ascending to the brain. J Comp Physiol 151:499–513

    Google Scholar 

  • Bretschneider F (1924) Über die Gehirne des Eichenspinners und des Seidenspinners (Lasiocampa quercus L.) und Bombyx mori L. Jena Z Nat 60:563–578

    Google Scholar 

  • Burrows M, Boeckh J, Esslen J (1982) Physiological and morphological properties of interneurons in the deutocerebrum of male cockroaches which respond to female pheromone. J Comp Physiol 145:447–457

    Google Scholar 

  • Camazine SM, Hildebrand JG (1979) Central projections of antennal sensory neurons in mature and developing Manduca sexta. Soc Neurosci Abstr 5:155

    Google Scholar 

  • Chambille I, Rospars JP (1985) Neurons and identified glomeruli of antennal lobes during postembryonic development in the cockroach Blaberus craniifer Burm. (Dictyoptera: Blaberidae). Int J Insect Morphol Embryol 14:203–226

    Google Scholar 

  • Christensen TA, Hildebrand JG (1984) Functional anatomy and physiology of male-specific pheromone-processing interneurons in the brain of Manduca sexta. Soc Neurosci Abstr 10:862

    Google Scholar 

  • Christensen TA, Hildebrand JG (1987a) Functions, organization, and physiology of the olfactory pathways in the lepidopteran brain. In: Gupta AP (ed) Arthropod brain: its evolution, development, structure and functions. Wiley, New York, pp 457–484

    Google Scholar 

  • Christensen TA, Hildebrand JG (1987b) Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the moth Manduca sexta. J Comp Physiol 160:553–569

    CAS  PubMed  Google Scholar 

  • Erber J, Homberg U, Gronenberg W (1987) The functional roles of the mushroom bodies in insects. In: Gupta AP (ed) Arthropod brain: its evolution, development, structure, and functions. Wiley, New York, pp 485–511

    Google Scholar 

  • Ernst KD, Boeckh J (1983) A neuroanatomical study on the organization of the central antennal pathways in insects. III. Neuroanatomical characterization of physiologically defined response types of deutocerebral neurons in Periplaneta americana. Cell Tissue Res 229:1–22

    Google Scholar 

  • Ernst KD, Boeckh J, Boeckh V (1977) A neuroanatomical study on the oganization of the central antennal pathways in insects. II. Deutocerebal connections in Locusta migratoria and Periplaneta americana. Cell Tissue Res 176:285–308

    CAS  PubMed  Google Scholar 

  • Fischbach KF, Heisenberg M (1984) Neurogenetics and behaviour in insects. J Exp Biol 112:65–93

    Google Scholar 

  • Frontali N, Mancini G (1970) Studies on the neuronal organisation of cockroach corpora pedunculata. J Insect Physiol 16:2239–2301

    Google Scholar 

  • Goll W (1967) Strukturuntersuchungen am Gehirn von Formica. Z Morphol Ökol Tiere 59:143–210

    Google Scholar 

  • Goodman LJ (1981) Organisation and physiology of the insect dorsal ocellar system. In: Autrum H, Jung R, Loewenstein WR, MacKay DM, Teuber HL (eds) Handbook of sensory physiology VII/6C. Springer, Berlin Heidelberg New York, pp 201–287

    Google Scholar 

  • Gregory GE (1980) The Bodian protargol technique. In: Strausfeld NJ, Miller TA (eds) Neuroanatomical techniques. Springer, Berlin Heidelberg New York, pp 75–95

    Google Scholar 

  • Gronenberg W (1986) Physiological and anatomical properties of optical input fibers to the mushroom body in the bee brain. J Insect Physiol 32:695–704

    Google Scholar 

  • Groth U (1971) Vergleichende Untersuchungen über die Topographie und Histologie des Gehirns der Dipteren. Zool Jb Anat 88:203–319

    Google Scholar 

  • Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Heisenberg M, Borst A, Wagner S, Byers D (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J Neurogenet 2:1–30

    CAS  Google Scholar 

  • Hildebrand JG (1985) Metamorphosis of the insect nervous system. Influences of the periphery on the postembryonic development of the antennal sensory pathway in the brain of Manduca sexta. In: Selverston AI (ed) Model neural networks and behavior. Plenum, New York, pp 129–148

    Google Scholar 

  • Hildebrand JG, Montague RA (1985) Functional organization of olfactory pathways in the central nervous system of Manduca sexta. In: Payne TL, Birch MC, Kennedy CEJ (eds) Mechanisms in insect olfaction. Clarendon Press, Oxford, pp 279–285

    Google Scholar 

  • Hildebrand JG, Matsumoto SG, Camazine SM, Tolbert LP, Blank S, Ferguson H, Ecker V (1980) Organisation and physiology of antennal centers in the brain of the moth Manduca sexta. In: Insect neurobiology and pesticide action (Neurotox 79). Soc Chem Ind, London, pp 375–382

    Google Scholar 

  • Homberg U (1984) Processing of antennal information in extrinsic mushroom body neurons of the bee brain. J Comp Physiol A 154:825–836

    Google Scholar 

  • Homberg U (1987) Structure and functions of the central complex in insects. In: Gupta AP (ed) Arthropod brain: its evolution, development, structure and functions. Wiley, New York, pp 347–367

    Google Scholar 

  • Homberg U, Kingan TG, Hildebrand JG (1987) Immunocytochemistry of GABA in the brain and suboesophageal ganglion of Manduca sexta. Cell Tissue Res 248:1–24

    Google Scholar 

  • Hoskins SG, Homberg U, Kingan TG, Hildebrand JG (1986) Immunocytochemistry of GABA in the antennal lobes of the sphinx moth Manduca sexta. Cell Tissue Res 244:243–252

    Google Scholar 

  • Humason GL (1972) Animal Tissue Techniques. Freeman, San Francisco

    Google Scholar 

  • Jawlowski H (1948) Studies on the insect brain. Ann Univ M Curie-Sklodowska C 3:1–37

    Google Scholar 

  • Jawlowski H (1954) Über die Struktur des Gehirns bei Saltatoria. Ann Univ M Curie-Sklodowska C 8:403–434

    Google Scholar 

  • Jawlowski H (1957) Nerve tracts in the bee (Apis mellifica) running from the light and antennal organs to the brain. Ann Univ M Curie-Sklodowska C 12:307–323

    Google Scholar 

  • Kaissling K-E, Priesner E (1970) Die Riechschwelle des Seidenspinners. Naturwissenschaften 57:23–28

    Google Scholar 

  • Kanzaki R, Shibuya T (1983) Olfactory neural pathway and sexual pheromone responses in the deutocerebrum of the male silkworm moth, Bombyx mori (Lepidoptera, Bombycidae). Appl Ent Zool 18:131–133

    Google Scholar 

  • Kanzaki R, Shibuya T (1986a) Identification of the deutocerebral neurons responding to the sexual pheromone in the male silkworm moth brain. Zool Sci 3:409–418

    Google Scholar 

  • Kanzaki R, Shibuya T (1986b) Descending protocerebral neurons related to the mating dance of the male silkworm moth. Brain Res 377:378–382

    Google Scholar 

  • Kent KS (1985) Metamorphosis of the antennal center and the influence of sensory innervation on the formation of glomeruli in the hawkmoth Manduca sexta. PhD Dissertation, Harvard University, Cambridge, USA

    Google Scholar 

  • Kent KS, Harrow ID, Quartararo P, Hildebrand JG (1986) An accessory olfactory pathway in Lepidoptera: the labial pit organ and its central projections in Manduca sexta and certain other sphinx moths and silk moths. Cell Tissue Res 245:237–245

    CAS  PubMed  Google Scholar 

  • Kent KS, Hoskins SG, Hildebrand JG (1987) A novel serotonin-immunoreactive neuron in the antennal lobe of the sphinx moth Manduca sexta persists throughout postembryonic life. J Neurobiol 189:451–465

    Google Scholar 

  • Kenyon FC (1896) The brain of the bee. A preliminary contribution to the morphology of the nervous system of the Arthropoda. J Comp Neurol 6:133–210

    Google Scholar 

  • Koontz MA, Schneider D (1987) Sexual dimorphism in neuronal projections from the antennae of silk moths (Bombyx mori, Antherea polyphemus) and the gypsy moth (Lymantria dispar). Cell Tissue Res 249:39–50

    Google Scholar 

  • Light DM (1986) Central integration of sensory signals: an exploration of processing of pheromonal and multimodal information in lepidopteran brain. In: Payne TL, Birch MC, Kennedy CEJ (eds) Mechanisms in insect olfaction. Clarendon Press, Oxford, pp 287–301

    Google Scholar 

  • Matsumoto SG, Hildebrand JG (1981) Olfactory mechanisms in the moth Manduca sexta: response characteristics and morphology of central neurons in the antennal lobes. Proc R Soc Lond [Biol] 213:249–277

    Google Scholar 

  • Mobbs PG (1982) The brain of the honeybee Apis mellifera. I. The connections and spatial organization of the mushroom bodies. Philos Trans R Soc Lond [Biol] 298:309–354

    Google Scholar 

  • Mobbs PG (1985) Brain structure. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. V. Nervous system, structure and motor function. Pergamon, Oxford, pp 299–370

    Google Scholar 

  • Mollenhauer HH (1964) Plastic embedding mixtures for use in electron microscopy. Stain Technol 39:111–114

    Google Scholar 

  • Montague RA, Kent KS, Imperato MT, Hildebrand JG (1983) Projections of antennal-lobe output neurons in the brain of Manduca sexta. Soc Neurosci Abstr 9:216

    Google Scholar 

  • Olberg RM (1983a) Interneurons sensitive to female pheromone in the deutocerebrum of the male silkworm moth Bombyx mori. Physiol Entomol 8:419–428

    Google Scholar 

  • Olberg RM (1983b) Pheromone-triggered flip-flopping interneurons in the ventral nerve cord of the silkworm moth, Bombyx mori. J Comp Physiol 152:297–307

    Google Scholar 

  • Pearson L (1971) The corpora pedunculata of Sphinx ligustri L. and other Lepidoptera, an anatomical study. Philos Trans R Soc Lond [Biol] 259:477–516

    Google Scholar 

  • Prillinger L (1981) Postembryonic development of the antennal lobes in Periplaneta americana L. Cell Tissue Res 215:563–575

    Google Scholar 

  • Power ME (1946) The antennal centers and their connections with the brain of Drosophila melanogaster. J Comp Neurol 85:485–517

    Google Scholar 

  • Rospars JP (1983) Invariance and sex-specific variations of the glomerular organization in the antennal lobes of a moth, Mamesta brassicae and a butterfly, Pieris brassicae. J Comp Neurol 220:80–96

    Google Scholar 

  • Schildberger K (1983) Local interneurons associated with the mushroom bodies and the central body in the brain of Acheta domesticus. Cell Tissue Res 230:573–586

    Google Scholar 

  • Schildberger K (1984a) Multimodal interneurons in the cricket brain: properties of identified extrinsic mushroom body cells. J Comp Physiol A 154:71–79

    Google Scholar 

  • Schildberger K (1984b) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155:171–185

    Google Scholar 

  • Schneiderman AM (1984) Postembryonic development of a sexually dimorphic sensory pathway in the central nervous system of the sphinx moth, Manduca sexta. PhD Dissertation, Harvard University, Cambridge, USA

    Google Scholar 

  • Schürmann FW (1974) Bemerkungen zur Funktion der Corpora pedunculata im Gehirn der Insekten aus morphologischer Sicht. Exp Brain Res 19:406–432

    Google Scholar 

  • Steiger U (1967) Über den Feinbau des Neuropils im Corpus pedunculatum der Waldameise. Z Zellforsch 81:511–536

    Google Scholar 

  • Stengl M (1985) Elektrophysiologische Ableitungen im Deutocerebrum von Calliphora erythrocephala. Diploma Thesis, Universität Würzburg, FRG

    Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Strausfeld NJ, Bacon JP (1983) Multimodal convergence in the central nervous system of dipterous insects. Fortschr Zool 28:47–76

    Google Scholar 

  • Strausfeld NJ, Bassemir UK (1985) Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and motor neuropil in Calliphora erythrocephala. Cell Tissue Res 240:617–640

    Google Scholar 

  • Strausfeld NJ, Hausen K (1977) The resolution of neuronal assemblies after cobalt injection into neuropil. Proc R Soc Lond [Biol] 199:463–476

    Google Scholar 

  • Strausfeld NJ, Seyan HS (1985) Convergence of visual, haltere, and prosternai inputs at neck motor neurons of Calliphora erythrocephala. Cell Tissue Res 240:601–615

    Google Scholar 

  • Strausfeld NJ, Bassemir U, Singh RN, Bacon JP (1984) Organizational principles of outputs from dipteran brains. J Insect Physiol 30:73–93

    Google Scholar 

  • Trujillo-Cenóz O, Melamed J (1962) Electron microscope observations on the calyces of the insect brain. J Ultrastruct Res 7:389–398

    Google Scholar 

  • Trump BF, Smuckler EA, Benditt EP (1961) A method for staining epoxy sections for light microscopy. J Ultrastruct Res 5:343–348

    Google Scholar 

  • Tyrer NM, Shaw MK, Altman JS (1980) Intensification of cobalt-filled neurons in sections (light and electron microscopy). In: Strausfeld NJ, Miller TA (eds) Neuroanatomical techniques. Springer, Berlin Heidelberg New York, pp 429–446

    Google Scholar 

  • Weiss MJ (1974) Neuronal connections and the function of the corpora pedunculata in the brain of the American cockroach Periplaneta americana. J Morphol 142:21–70

    Google Scholar 

  • Weiss MJ (1981) Structural patterns in the corpora pedunculata of Orthoptera: A reduced silver analysis. J Comp Neurol 203:515–553

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homberg, U., Montague, R.A. & Hildebrand, J.G. Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta . Cell Tissue Res. 254, 255–281 (1988). https://doi.org/10.1007/BF00225800

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00225800

Key words

Navigation