Skip to main content
Log in

Differences in growth of neurons from normal and regenerated teleost spinal cord in vitro

  • Growth, Differentiation And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Explants and dissociated cells from normal adult spinal cord and regenerating cord of the teleostApteronotus albifrons were grown in vitro for periods of 8 to 12 wk. During this time the neurons showed extensive neurite outgrowth. Neurite outgrowth from tissue explants and dissociated cells of regenerated spinal cord starts sooner and is more profuse than that from normal (unregenerated) cord. Neurite outgrowth is maximized by using adhesive substrata and a high density of explants or dissociated cells. Inasmuch asApteronotus does regenerate its spinal cord naturally after injury, whereas mammals do not, this culture system will be useful to study factors that control (permit) regeneration of spinal neurons in this adult vertebrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M. J.; Waxman, S. G. Regeneration of spinal neurons in inframammalian vertebrates: morphological and developmental aspects. J. Hirnforsch. 24:371–398; 1983.

    PubMed  CAS  Google Scholar 

  2. Anderson, M. J.; Waxman, S. G. Caudal spinal cord of the teleostSternarchus albifrons resembles regenerating cord. Anat. Rec. 205:85–92; 1983.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson, M. J.; Waxman, S. G. Neurogenesis in tissue cultures of adult teleost spinal cord. Dev. Brain Res. 20:203–212; 1985.

    Article  Google Scholar 

  4. Anderson, M. J.; Waxman, S. G. Neurogenesis in adult vertebrate spinal cordin situ andin vitro: a new model system. Ann. NY Acad. Sci. 457:213–233; 1985.

    Article  PubMed  CAS  Google Scholar 

  5. Anderson, M. J.; Waxman, S. G.; Laufer, M. Fine structure of regenerated ependyma and spinal cord inSternarchus albifrons. Anat. Rec. 205:73–83; 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Anderson, M. J.; Waxman, S. G.; Tadlock, C. H. Cell death of asynaptic neurons in regenerating spinal cord. Dev. Biol. 103:443–455; 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Bartlett, P. F.; Reid, H. H.; Bailey, K. A., et al. Immortalization of mouse neural precursor cells by the c-myc oncogene. Proc. Natl. Acad. Sci. USA 85:3255–3259; 1988.

    Article  PubMed  CAS  Google Scholar 

  8. Birse, S. C.; Leonard, R. B.; Coggeshall, R. E. Neuronal increase in various areas of the nervous system of the guppy,Lebistes. J. Comp. Neurol. 194:291–301; 1980.

    Article  PubMed  CAS  Google Scholar 

  9. Bornstein, M. B. Reconstituted rat-tail collagen used as a substrate for tissue cultures on coverslips in Maximow slides and roller tubes. Lab. Invest. 7:134–137; 1958.

    PubMed  CAS  Google Scholar 

  10. Bottenstein, J. E.; Sato, G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc. Natl. Acad. Sci. USA 76:514–517; 1979.

    Article  PubMed  CAS  Google Scholar 

  11. Bunge, M. B. Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture. J. Cell Biol. 56:713–735; 1973.

    Article  PubMed  CAS  Google Scholar 

  12. Bunge, M. B. Initial endocytosis of peroxidase or ferritin by growth cones of cultured nerve cells. J. Neurocytol. 6:407–439; 1977.

    Article  PubMed  CAS  Google Scholar 

  13. Butler, E. G.; Ward, M. B. Reconstitution of the spinal cord following ablation in urodele larvae. J. Exp. Zool. 160:47–66; 1965.

    Article  PubMed  CAS  Google Scholar 

  14. Cattaneo, E.; McKay, R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347:762–765; 1990.

    Article  PubMed  CAS  Google Scholar 

  15. Connolly, J. L.; Seeley, P. J.; Greene, L. A. Regulation of growth cone morphology by nerve growth factor: a comparative study by scanning electron microscope. J. Neurosci. Res. 13:183–198; 1985.

    Article  PubMed  CAS  Google Scholar 

  16. DeBoni, U.; Seger, M.; Scott, J. W., et al. Neuron culture from adult goldfish. J. Neurobiol. 7:495–512; 1976.

    Article  CAS  Google Scholar 

  17. DiCicco-Bloom, E.; Townes-Anderson, E.; Black, I. B. Neuroblast mitosis in dissociated culture: regulation and relationship to differentiation. J. Cell Biol. 110:2073–2086; 1990.

    Article  PubMed  CAS  Google Scholar 

  18. Drago, J.; Murphy, M.; Carroll, S. M., et al. Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor I. Proc. Natl. Acad. Sci. USA 88:2199–2203; 1991.

    Article  PubMed  CAS  Google Scholar 

  19. Egar, M.; Simpson, S. B.; Singer, M. The growth and differentiation of the regenerating spinal cord of the lizardAnolis carolinensis. J. Morphol. 131:131–152; 1970.

    Article  PubMed  CAS  Google Scholar 

  20. Elsdale, P.; Bard, J. Collagen substrata for studies on cell behavior. J. Cell Biol. 54:626–637; 1972.

    Article  PubMed  CAS  Google Scholar 

  21. Frederiksen, K.; Jat, P. S.; Valtz, N., et al. Immortalization of precursor cells from the mammalian CNS. Neuron 1:439–448; 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Goldman, S. A.; Nottebohm, F. Neuronal production, migration and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl. Acad. Sci. USA 80:2390–2394; 1983.

    Article  PubMed  CAS  Google Scholar 

  23. Gopalakrishnan, T. V.; Thompson, E. B. A method for enucleating cultured mammalian cells. Exp. Cell Res. 96:435–439; 1975.

    Article  PubMed  CAS  Google Scholar 

  24. Hammang, J. P.; Baetge, E. E.; Behringer, R. R., et al. Immortalized retinal neurons derived from SV40 T-antigen-induced tumors in transgenic mice. Neuron 4:775–782; 1990.

    Article  PubMed  CAS  Google Scholar 

  25. Haydon, P. G.; Cohan, C. S.; McCobb, D. P., et al. Neuron-specific growth cone properties as seen in identified neurons ofHelisoma. Neurosci. Res. 13:135–147; 1985.

    Article  CAS  Google Scholar 

  26. Jacobson, M. F. Developmental neurobiology, 3rd ed. New York: Plenum; 1991:41–93.

    Google Scholar 

  27. Kirschbaum, F. Environmental factors control the periodical reproduction of tropical electric fish. Experientia 31:1159–1160; 1975.

    Article  Google Scholar 

  28. Koppanyi, T. Regeneration in the central nervous system of the fish. In: Windle, W. F., ed. Regeneration in the central nervous system. Springfield, IL: C. C. Thomas; 1955:3–19.

    Google Scholar 

  29. Laale, H. W. Fish embryo culture: migration and spreading of zebrafish (Brachydanio erio) pigmented retinal epithelium. In Vitro 17:701–705; 1981.

    Google Scholar 

  30. Laale, H. W. Fish embryo culture: rhombencephalic neuritic outgrowth in explanted axial cords from the zebrafishBrachydanio rerio (Hamilton-Buchanan). Can. J. Zool. 60:3215–3219; 1982.

    Article  Google Scholar 

  31. Landreth, G. E.; Agranoff, B. W. Explant culture of adult goldfish retina: effect of prior optic nerve crush. Brain Res. 118:299–303; 1976.

    Article  PubMed  CAS  Google Scholar 

  32. Lanners, H. N.; Grafstein, B. Effect of a conditioning lesion on regeneration of goldfish optic axons: ultrastructural evidence of enhanced outgrowth and pinocytosis. Brain Res. 196:547–553; 1980.

    Article  PubMed  CAS  Google Scholar 

  33. Lendahl, U.; McKay, R. D. G. The use of cell lines in neurobiology. Trends Neurosci. 13:132–137; 1990.

    Article  PubMed  CAS  Google Scholar 

  34. Leonard, R. B.; Coggeshall, R. E.; Willis, W. D. A documentation of an age related increase in neuronal and axonal numbers in the stingrayDasyatis sabina. J. Comp. Neurol. 179:13–22; 1978.

    Article  PubMed  CAS  Google Scholar 

  35. Letourneau, P. C. Possible roles for cell-to-substratum adhesion in neuronal morphogenesis. Dev. Biol. 44:77–91; 1975.

    Article  PubMed  CAS  Google Scholar 

  36. Lopez-Garcia, C.; Malowney, A.; Rodriguez-Serna, R., et al. Postnatal development of neurons in the telencephalic cortex of lizards. In: Schwerdtfeger, W. K.; Smetts, W. J. A. J., eds. Forebrain of reptiles. Basel: Krager; 1988:122–130.

    Google Scholar 

  37. Mellon, P. L.; Windle, J. J.; Goldsmith, P. C., et al. Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5:1–10; 1990.

    Article  PubMed  CAS  Google Scholar 

  38. Nordlander, R. H.; Singer, M. The role of ependyma in regeneration of the spinal cord in the urodele amphibian tail. J. Comp. Neurol. 180:349–374; 1978.

    Article  PubMed  CAS  Google Scholar 

  39. Notter, M. F. D. Selective attachment of neural cells to specific substrates including Cell-Tak, a new cellular adhesive. Exp. Cell Res. 177:237–246; 1988.

    Article  PubMed  CAS  Google Scholar 

  40. Nuttall, R. P.; Wessells, N. K. Veils, mounds, and vesicle aggregates in neurons elongatingin vitro. Exp. Cell Res. 119:163–174; 1979.

    Article  PubMed  CAS  Google Scholar 

  41. Pfenninger, K. H. Subplasmalemmal vesicle clusters: real or artifact? In: Rash, J. E.; Hudson, C. S., eds. Freeze-fracture: methods, artifacts and interpretations. New York: Raven Press; 1979:71–80.

    Google Scholar 

  42. Piatt, J. Regeneration of the spinal cord in the salamander. J. Exp. Zool. 29:177–208; 1955.

    Article  Google Scholar 

  43. Reynolds, B. A.; Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710; 1992.

    Article  PubMed  CAS  Google Scholar 

  44. Riberio, L. P.; Ahne, W.; Lichtenburg, V. Primary culture of normal pituitary cells of carp (Cyprinus carpio) for the study of gonadotropin release. In Vitro 19:41–45; 1983.

    Article  Google Scholar 

  45. Ronnett, G. V.; Hester, L. D.; Nye, J. S., et al. Human cortical neuronal cell line: establishment from a patient with unilateral megalencephaly. Science 248:603–604; 1990.

    Article  PubMed  CAS  Google Scholar 

  46. Simpson, S. B. Analysis of tail regeneration in the lizardLygosoma laterale. I. Initiation of regeneration and cartilage differentiation: the role of ependyma. J. Morphol. 114:425–436; 1964.

    Article  PubMed  Google Scholar 

  47. Skoff, R. P. Hamburger, V. Fine structure of dendritic and axonal growth cones in embryonic chick spinal cord. J. Comp. Neurol. 153:107–148; 1974.

    Article  PubMed  CAS  Google Scholar 

  48. Spooner, B. S. The expression of differentiation by chick embryo thyroid in cell culture. I. Functional and fine structural stability in mass and clonal culture. J. Cell. Physiol. 75:33–48; 1970.

    Article  PubMed  CAS  Google Scholar 

  49. Spooner, B. S.; Luduena, M. A.; Wessells, N. K. Membrane fusion in the growth cone micro-spike region of embryonic nerve cells undergoing axon elongation in cell culture. Tissue & Cell 6:399–409; 1974.

    Article  CAS  Google Scholar 

  50. Tosney, K. W.; Wessells, N. K. Neuronal motility: the ultrastructure of veils and microspikes correlates with their motile activities. J. Cell Sci. 61:389–411; 1983.

    PubMed  CAS  Google Scholar 

  51. Waite, J. H.; Tanzer, M. L. Polyphenolic substance ofMytilus edulis: novel adhesive containing L-Dopa and hydroxyproline. Science 212:1038–1040; 1981.

    Article  CAS  PubMed  Google Scholar 

  52. Wolf, K.; Quimby, M. C.; Pyle, E. A., et al. Preparation of monolayer cultures from tissues of some lower vertebrates. Science 132:1890–1891; 1960.

    Article  PubMed  CAS  Google Scholar 

  53. Wong, R. G.; Hadley, R. D.; Kater, S. B., et al. Neurite outgrowth in molluscan organ and cell cultures: the role of conditioning factor(s) J. Neurosci. 1:1008–1021; 1981.

    PubMed  CAS  Google Scholar 

  54. Wood, M.; Cohen, M. Synaptic regeneration and glial reactions in the transected spinal cord of the lamprey. J. Neurocytol. 10:57–79; 1981.

    Article  PubMed  CAS  Google Scholar 

  55. Yamada, K. M.; Spooner, B. S.; Wessells, N. K. Ultrastructure and function of growth cones and axons of cultured nerve cells. J. Cell Biol. 49:614–635; 1971.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, M.J. Differences in growth of neurons from normal and regenerated teleost spinal cord in vitro. In Vitro Cell Dev Biol - Animal 29, 145–152 (1993). https://doi.org/10.1007/BF02630946

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02630946

Key words

Navigation