Skip to main content
Log in

Further purification of a fibroblast growth factor-like factor from chick embryo extract by heparin-affinity chromatography

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

A mitogenic factor which promotes quail myoblast proliferation has been purified some 105-fold from chick embryo extract by a combination of cation-exchange chromatography and heparin-affinity chromatography. The factor is eluted from heparin-Sepharose with 2M NaCl and is a single-chain polypeptide with an apparent molecular weight of 15000 to 17000. It is active at subnanogram level in triggering the proliferation and thereby delaying temporarily fusion of myoblasts. It also stimulates the proliferation of quail fibroblasts in a similar effective concentration range. For both myoblasts and fibroblasts the dose-response to the factor is quantitatively and qualitatively comparable with that of bovine pituitary fibroblast growth factor. These observations strongly suggest that the factor very probably corresponds to chicken fibroblast growth factor or to a closely related molecule(s) and that it is possibly involved in the regulation of myogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, R. E.; Dodson, M. V.; Luiten, L. S. Regulation of skeletal muscle satellite cell proliferation by bovine pituitary fibroblast growth factor. Exp. Cell Res. 152:154–160; 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Bayne, E. K.; Simpson, S. B., Jr. Influence of environmental factors on the accumulation and differentiation of prefusion G1 lizard myoblasts in vitro. Exp. Cell Res. 127:15–30; 1980.

    Article  PubMed  CAS  Google Scholar 

  3. Bischoff, R. A satellite cell mitogen from crushed adult muscle. Dev. Biol. 115:140–147; 1986.

    Article  PubMed  CAS  Google Scholar 

  4. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  5. Burgess, W. H.; Mehlman, T.; Marshak, D. R. et al. Structural evidence that endothelial cell growth factor is the precursor of both endothelial cell growth factor and acidic fibroblast growth factor. Proc. Natl. Acad. Sci. USA 83:7216–7221; 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Clegg, C. H.; Linkhart, T. A.; Olwin, B. B., et al. Growth factor control of skeletal muscle differentiation: committment to terminal differentiation occurs in G1 [hase and is repressed by fibroblast growth factor. J. Cell. Biol. 105:949–956; 1987.

    Article  PubMed  CAS  Google Scholar 

  7. De la Haba, G.; Cooper, G. W.; Elting, V. Hormonal requirements for myogenesis of striated muscle in vitro: insulin and somatotropin. Proc. Natl. Sci. USA 56:1719–1723; 1966.

    Article  Google Scholar 

  8. Emerson, C. P.; Becker, S. K. Activation of myosin synthesis in fusing and mononucleated myoblasts. J. Mol. Biol. 93:431–447; 1975.

    Article  PubMed  CAS  Google Scholar 

  9. Ewton, D. Z.; Florini, J. R. Relative effects of the somatomedins, multiplication-stimulating activity, and growth hormone on myoblasts and myotubes in culture. Endocrinology 106:577–583; 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Ewton, D. Z.; Florini, J. R. Effect of the somatomedins and insulin on myoblast differentiation in vitro. Dev. Biol. 86:31–39; 1981.

    Article  PubMed  CAS  Google Scholar 

  11. Florini, J. R.; Roberts, S. B. A serum-free medium for the growth of muscle cells in culture. In Vitro 15:983–991; 1980.

    Article  Google Scholar 

  12. Florini, J. R.; Ewton, D. Z. Insulin acts as a somatomedin analogue in stimulating myoblast growth in serum-free medium. In Vitro 17:763–768; 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Florini, J. R.; Roberts, A.; Ewton, D. Z., et al. Transforming growth factor β. A very potent inhibitor of myoblast differentiation, identical to the differentiation inhibitors secreted by Buffalo rat liver cells. J. Biol. Chem. 261:16509–16513; 1986.

    PubMed  CAS  Google Scholar 

  14. Gospodarowicz, D.; Weseman, J.; Moran, J. Presence in brain of a mitogenic agent promoting proliferation of myoblasts in low density culture. Nature 256:216–219; 1975.

    Article  PubMed  CAS  Google Scholar 

  15. Gospodarowicz, D.; Weseman, J.; Moran, J. S., et al. Effect of fibroblast growth factor on the division and fusion of bovine myoblasts. J. Cell Biol. 70:395–405; 1976.

    Article  PubMed  CAS  Google Scholar 

  16. Gospodarowicz, D.; Neufeld, G.; Schweigerer, L. Molecular and biological characterization of fibroblast growth factor, an angiogenic factor which also controls the proliferation and differentiation of mesoderm and neuroectoderm derived cells. Cell Differ. 19:1–17; 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Hauschka, S. D. Clonal analysis of vertebrate myogenesis. II Environmental influence upon human muscle differentiation. Dev. Biol. 37:329–344; 1974.

    Article  PubMed  CAS  Google Scholar 

  18. Ii, I.; Kimura, I.; Ozawa, E. A myotrophic protein from chick embryo: its purification, identity to transferrin and indispensability for avian myogenesis. Dev. Biol. 94:366–377; 1982.

    Article  PubMed  CAS  Google Scholar 

  19. Ii, I.; Kimura, I.; Ozawa, E. Promotion of myoblast proliferation by hypoxanthine and RNA in chick embryo extract. Dev. Growth & Differ. 27:101–110; 1985.

    Article  CAS  Google Scholar 

  20. Ii, I.; Ozawa, E. Partial purification from chick embryos of a factor which promotes myoblast proliferation and delays fusion. Dev. Growth & Differ. 27:717–728; 1985.

    Article  CAS  Google Scholar 

  21. Jabaily, J.; Singer, M. Neurotrophic and hepatotrophic stimulation of proliferation of embryonic chick muscle cells in vitro. Assay and partial characterization of mitogenic activity in chick embryonic organ and tissue extracts. Dev. Biol. 64:189–202; 1978.

    Article  PubMed  CAS  Google Scholar 

  22. Kardami, E.; Spector, D.; Strohman, R. C. Myogenic growth factor present in skeletal muscle is purified by heparin-affinity chromatography. Proc. Natl. Acad. Sci. USA 82:8044–8047; 1985.

    Article  PubMed  CAS  Google Scholar 

  23. Kimura, I.; Hasegawa, T.; Miura, T., et al. Muscle trophic factor is identical to transferrin. Proc. Jpn. Acad. 57B:200–205; 1981.

    Google Scholar 

  24. Kimura, I.; Hasegawa, T.; Ozawa, E. Indispensability of iron-bound chick transferrin for chick myogenesis in vitro. Dev. Growth & Differ. 24:369–380; 1982.

    Article  CAS  Google Scholar 

  25. Kimura, I.; Hasegawa, T.; Ozawa, E. Molecular intactness of transferrin recycled in a myogenic chicken cell culture. Cell Struct. Funct. 10:17–27; 1985.

    Article  PubMed  CAS  Google Scholar 

  26. Konigsberg, I. R. Diffusion-mediated control of myoblast fusion. Dev. Biol. 26:133–152; 1971.

    Article  PubMed  CAS  Google Scholar 

  27. Konigsberg, I. R. The role of the enviroment in the control of myogenesis in vitro. In: Rowland, L. P., ed, Pathogenesis of human muscular dystrophies. Amsterdam: Excerpta Medica; 1977:779–798.

    Google Scholar 

  28. Konigsberg, I. R.; Sollmann, P. A.; Mixter, L. O. The duration of the terminal G1 of fusing myoblasts. Dev. Biol. 63:11–26; 1978.

    Article  PubMed  CAS  Google Scholar 

  29. Konigsberg, I. R. Skeletal myoblasts in culture. In: Jacoby, W. B.; Pastan, I. H., eds. Methods enzymol. 57:511–527; 1979.

  30. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  31. Lathrop, B.; Olson, E.; Glaser, L. Control by fibroblast growth factor of differentiation in the BC3H1 muscle cell line. J. Cell Biol. 100:1540–1547; 1985.

    Article  PubMed  CAS  Google Scholar 

  32. Lathrop, B.; Thomas, K.; Glaser, L. Control of myogenic differentiation by fibroblast growth factor is mediated by position in the G1 phase of the cell cycle. J. Cell Biol. 101:2194–2198; 1985.

    Article  PubMed  CAS  Google Scholar 

  33. Linkhart, T. A.; Clegg, C. H.; Hauschka, S. D. Myogenic differentiation in permanent clonal mouse myoblast cell lines: regulation by macromolecular growth factors in the culture medium. Dev. Biol. 86:19–30; 1981.

    Article  PubMed  CAS  Google Scholar 

  34. Linkhart, T. A.; Lim, R. W.; Hauschka, S. D. Regulation of normal and variant mouse myoblast proliferation and differentiation by specific growth factor. In: Sato, G. H.; Pardee, A. B.; Sirbasku, D. A.. eds., Growth of cells in hormonally defined media. Cold Spring Harbor Conferences on Cell Proliferation, vol. 9, New York: Cold Spring Harbor Laboratory; 1982:867–876.

    Google Scholar 

  35. Linkhart, T. A.; Clegg, C. H.; Lim, R. W., et al. Control of mouse myoblast commitment to terminal differentiation by mitogens. In: Pearson, M. L.; Epstein, H. J., eds. Muscle development: molecular and cellular control. New York: Cold Spring Harbor Laboratory; 1982:377–382.

    Google Scholar 

  36. Lobb, R. R.; Harper, W.; Fett, J. W. Purification of heparin-binding growth factors. Anal. Biochem. 154:1–14; 1986.

    Article  PubMed  CAS  Google Scholar 

  37. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  38. Massague, J.; Cheifetz, S.; Endo, T., et al. Type β transforming growth factor is an inhibitor of myogenic differentiation. Proc. Natl. Acad. Sci. USA 83:8206–8210; 1986.

    Article  PubMed  CAS  Google Scholar 

  39. Nadal-Ginard, B. Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis. Cell 15:855–864; 1978.

    Article  PubMed  CAS  Google Scholar 

  40. Olson, E. N.; Sternberg, E.; Hu, J. S., et al. Regulation of myogenic differentiation by type β transforming growth factor. J. Cell Biol. 103:1799–1805; 1986.

    Article  PubMed  CAS  Google Scholar 

  41. Olwin, B. B.; Hauschka, S. D. Identification of the fibroblast growth factor receptor of Swiss 3T3 cells and mouse skeletal muscle myoblasts. Biochemistry 25:3487–3492; 1986.

    Article  PubMed  CAS  Google Scholar 

  42. O'Neil, M. C.; Stockdale, F. E. A kinetic analysis of myogenesis in vitro. J. Cell Biol. 52:52–65; 1972.

    Article  Google Scholar 

  43. Ozawa, E.; Hagiwara, Y. Degeneration of large myotubes following removal of transferrin from culture medium. Biomed. Res. 3:16–23; 1982.

    CAS  Google Scholar 

  44. Risau, W.; Gautschi-Sova, P.; Bohlen, P. Endothelial cell growth factors in embryonic and adult chick brain and related to human acidic fibroblast growth factor. EMBO J. 7:959–962; 1988.

    PubMed  CAS  Google Scholar 

  45. Saitoh, K.; Hagiwara, Y.; Hasegawa, T., et al. Indispensability of iron on the growth of cultured chick cells. Dev. Growth & Differ. 24:571–580; 1982.

    Article  Google Scholar 

  46. Schmidt, C.; Steiner, T.; Froesch, E. R. Preferential enhancement of myoblast differentiation by insulin-like growth factors (IGF I and IGF II) in primary cultures of chicken embryonic cells. FEBS Lett. 161:117–121; 1983.

    Article  Google Scholar 

  47. Seed, J.; Hauschka, S. D. Clonal analysis of vertebrate myogenesis. VIII. Fibroblast growth factor (FGF)-dependent and FGF-independent muscle colony types during chick wing development. Dev. Biol. 128:40–49; 1988.

    Article  PubMed  CAS  Google Scholar 

  48. Seed, J.; Olwin, B. B.; Hauschka, S. D. Fibroblast growth factor levels in the whole embryo and limb bud during chick development. Dev. Biol. 128:50–57; 1988.

    Article  PubMed  CAS  Google Scholar 

  49. Shimo-Oka, T.; Hagiwara, Y.; Ozawa, E. Class specificity of transferrin as a muscle trophic factor. J. Cell Physiol. 126:341–351; 1986.

    Article  PubMed  CAS  Google Scholar 

  50. Slater, C. R. Control of myogenesis in vitro by chick embryo extract. Dev. Biol. 50:264–284; 1976.

    Article  PubMed  CAS  Google Scholar 

  51. Spizz, G.; Roman, D.; Strauss, A., et al. Serum and fibroblast growth factor inhibit myogenic differentiation through a mechanism dependent on protein synthesis and independent of cell proliferation. J. Biol. Chem. 261:9883–9888; 1986.

    Google Scholar 

  52. Summers, P. J.; Ashmore, C. R.; Lee, Y. B., et al. Stretch-induced growth in chicken wing muscles: role of soluble growth-promoting factors. J. Cell. Physiol. 125:288–294; 1985.

    Article  PubMed  CAS  Google Scholar 

  53. Vandenburgh, H. H.; Sheff, M. F.; Zacks, S. I. Soluble age-related factors from skeletal muscle which influence muscle development. Exp. Cell Res. 153:389–401; 1984.

    Article  PubMed  CAS  Google Scholar 

  54. White, N. K.; Hauschka, S. D. Muscle development in vitro: a new conditioned medium effect on colony differentiation. Exp. Cell Res. 67:479–482; 1971.

    Article  PubMed  CAS  Google Scholar 

  55. Yaffe, D. Development changes preceding cell fusion during muscle differentiation in vitro. Exp. Cell Res. 66:33–48; 1971.

    Article  PubMed  CAS  Google Scholar 

  56. Yaffe, D. Rat skeletal muscle cells. In: Kruse, P. F., Jr., Patterson, M. K., Jr., eds. Tissue culture methods and application. New York: Academic Press; 1973:106–114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partly supported by a grant from the National Center of Neurology and Psychiatry (NCNP grant 86-01) of the Ministry of Health and Welfare, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, I., Gotoh, Y. & Ozawa, E. Further purification of a fibroblast growth factor-like factor from chick embryo extract by heparin-affinity chromatography. In Vitro Cell Dev Biol 25, 236–242 (1989). https://doi.org/10.1007/BF02628460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02628460

Key words

Navigation