Skip to main content
Log in

Insulin acts as a somatomedin analog in stimulating myoblast growth in serum-free medium

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

A serum-free medium that supports the proliferation of myoblasts (but not of fibroblasts) has been developed recently in this laboratory. It is composed of 10−6 M insulin, 10−7 M dexamethasone, and 10−5 M fetuin, and is designated medium MM-1. The latter two components gave optimal stimulation at or near “physiological” concentrations, but insulin was required at levels far in excess of those found in serum. Accordingly, we have now investigated the possibility that insulin acts as a week analog of the somatomedins, as has been suggested in other systems. We found that maximal growth rates were observed when 10−6 M insulin was replaced by 0.5 to 1.0 μg/ml multiplication stimulating activity (MSA), indicating that insulin serves a somatomedinlike function of MM-1. We also investigated the possibility that a contaminant of fetuin is responsible for its action in MM-1 but found no evidence to support this suggestion. We conclude that MM-1 is suitable for the study of muscle cell growth and differentiation under rather well-defined conditions, and that insulin probably is serving as a somatomedin analog in this medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Florini, J. R.; Roberts, S. B. A serum-free medium for the growth of muscle cells in culture. In Vitro 15:983–991; 1980.

    Google Scholar 

  2. Gospodarowicz, D.; Moran, J. S.. Growth factors in mammalian cell culture. Ann Rev. Biochem. 45: 531–558; 1976.

    Article  PubMed  CAS  Google Scholar 

  3. Deutsch, H. F. Fetuin: the mucoprotein of fetal calf serum. J. Biol. Chem. 208: 669–678; 1954.

    PubMed  CAS  Google Scholar 

  4. Moses, A. C.; Nissley, S. P.; Short, P. A.; Rechler, M. M.; Podskalny, J. M. Purification and characterization of Multiplication-Stimulating Activity. Insulin-like growth factors purified from rat-liver-cell-conditioned medium. Eur. J. Biochem. 103: 387–400; 1980.

    Article  PubMed  CAS  Google Scholar 

  5. Yaffe, D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc. Natl. Acad. Sci. USA 61:477–483; 1968.

    Article  PubMed  CAS  Google Scholar 

  6. Rizzino, A.; Sato, G. Growth of embryonal carcinoma cells in serum-free medium. Proc. Natl. Acad. Sci. USA 75: 1844–1848; 1978.

    Article  PubMed  CAS  Google Scholar 

  7. Davoren, P. R. The isolation of insulin from a single cat pancreas. Biochim. Biophys. Acta 63: 150–153; 1962.

    Article  PubMed  CAS  Google Scholar 

  8. Osborne, C. K.; Monaco, M. E.; Lippman, M. E.; Kahn, C. R.. Correlation among insulin binding, degradation, and biological activity in human breast cancer cells in long-term tissue culture. Cancer Res. 38: 94–102; 1978.

    PubMed  CAS  Google Scholar 

  9. Hayashi, I.; Larner, J.; Sato, G. Hormonal growth of cells in culture. In Vitro 14: 23–30; 1978.

    Article  PubMed  CAS  Google Scholar 

  10. Duckworth, W. C.; Heinemann, M.; Kitabchi, A. E. Proteolytic degradation of insulin and glucagon. Biochim. Biophys. Acta 377: 421–430; 1975.

    PubMed  CAS  Google Scholar 

  11. Ewton, D. Z.; Florini, J. R. Relative effects of the somatomedins, MSA, and growth hormone on myoblasts and myotubes in culture. Endocrinology 106: 577–583; 1980.

    PubMed  CAS  Google Scholar 

  12. King, G. L.; Kahn, C. R.; Rechler, M. M.; Nissley, S. P.. Direct demonstration of separate receptors for growth and metabolic activities of insulin and multiplication-stimulating activity (an insulin-like growth factor) using antibodies to the insulin receptor. J. Clin. Invest. 66: 130–140; 1980.

    Article  PubMed  CAS  Google Scholar 

  13. Florini, J. R.; Nicolson, M. L.; Dulak, N. C. Effects of peptide anabolic hormones on growth of myoblasts in culture. Endocrinology 101: 32–41; 1977.

    Article  PubMed  CAS  Google Scholar 

  14. Merrill, G. F.; Florini, J. R.; Dulak, N. C. Effects of Multiplication Stimulating Activity (MSA) on AIB transport into myoblast and myotube cultures. J. Cell. Physiol. 93: 173–182; 1977.

    Article  PubMed  CAS  Google Scholar 

  15. Merrill, G. F.; Dulak, N. C.; Florini, J. R.. MSA stimulation of AIB transport is independent of K+ accumulation in myoblasts. J. Cell. Physiol. 100: 343–350; 1979.

    Article  PubMed  CAS  Google Scholar 

  16. Jefferson, L. S.; Koehler, J. O.; Morgan, H. E. Effect of insulin on protein synthesis in skeletal muscle of an isolated perfused preparation of rat hemicorpus. Proc. Natl. Acad. Sci. USA 69: 816–820; 1972.

    Article  PubMed  CAS  Google Scholar 

  17. Fisher, H. W.; Puck, T. T.; Sato, G. Molecular growth requirements of single mammalian cells. Proc. Natl. Acad. Sci. USA 44: 4–10; 1958.

    Article  PubMed  CAS  Google Scholar 

  18. Lieberman, I.; Lamy, F.; Ove, P. Nonidentity of fetuin and protein growth (flattening) factor. Science 129: 43–44; 1959.

    Article  PubMed  CAS  Google Scholar 

  19. Nishikawa, K.; Armelin, H. A.; Sato, G.. Control of ovarian cell growth in culture by serum and pituitary factors. Proc. Natl. Acad. Sci. USA 72: 483–487; 1975.

    Article  PubMed  CAS  Google Scholar 

  20. Chiquet, M.; Puri, E. C.; Turner, D. C. Fibronectin mediates attachment of chicken myoblasts to a gelatin-coated substratum. J. Biol. Chem. 254: 5475–5482; 1978.

    Google Scholar 

  21. Podleski, T. R.; Greenberg, I.; Schlessinger, J.; Yamada, K. M.. Fibronectin delays the fusion of L6 myoblasts. Exp. Cell Res 122: 317–326; 1979.

    Article  PubMed  CAS  Google Scholar 

  22. Rizzino, A.; Crosley, C. Growth and differentiation of embryonal carcinoma cell line F9 in defined media. Proc. Natl. Acad. Sci. USA 77: 457–461; 1980.

    Article  PubMed  CAS  Google Scholar 

  23. Moses, A. C.; Nissley, S. P.; Short, P. A.; Rechler, M. M.; White, R. M.; Knight, A. B.; Higa, O. Z. Increased levels of Multiplication-Stimulating Activity, an insulin-like growth factor, in fetal rat serum. Proc. Natl. Acad. Sci. USA 77: 3649–3653; 1980.

    Article  PubMed  CAS  Google Scholar 

  24. Linkhart, T.; Clegg, C.; Hauschka, S. Kinetics of mouse myoblast commitment for differentiation and response to purified mitogens. J. Cell. Biol. 83; abst. CD 126, 1979.

  25. de la Haba, G.; Cooper, G. W.; Elting, V. Hormonal requirements for myogenesis of striated musclein vitro: Insulin and somatotrophin. Proc. Natl. Acad. Sci. USA 56: 1719–1723; 1966.

    Article  PubMed  Google Scholar 

  26. Mandel, J. L.; Pearson, M. L. Insulin stimulates myogenesis in a rat myoblast line. Nature 251: 618–620; 1974.

    Article  PubMed  CAS  Google Scholar 

  27. Ball, E. H.; Sanwal, B. D. A synergistic effect of glucocorticoids and insulin on the differentiation of myoblasts. J. Cell. Physiol. 102: 27–36; 1980.

    Article  PubMed  CAS  Google Scholar 

  28. Ewton, D. Z.; Florini, J. R. Effects of the somatomedins and insulin on myoblast differentiationin vitro. Develop. Biol. 86: 31–39; 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by a grant from the Muscular Dystrophy Association and by Grants HL11551 and AG 00629 from the National Institutes of Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Florini, J.R., Ewton, D.Z. Insulin acts as a somatomedin analog in stimulating myoblast growth in serum-free medium. In Vitro 17, 763–768 (1981). https://doi.org/10.1007/BF02618442

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618442

Key words

Navigation