Skip to main content
Log in

Growth of epithelium from a preneoplastic mammary outgrowth in response to mammary adipose tissue

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

We investigated the effects of conditioned media derived from mouse mammary fat pads on the proliferation of CL-S1 cells, an epithelial cell line originally isolated from a preneoplastic mammary outgrowth line. Cell proliferation in vitro in serum-free defined medium was compared to that in this medium conditioned using intact mammary fat pad pieces or isolated fat pad adipocytes. Culture medium was conditioned by incubating the conditioning material in defined culture medium for 24 h at 37°C. Conditioned medium induced CL-S1 proliferation as much as 10- to 20-fold above the minimal levels of growth in control cultures after 13 d of culture. The growth-stimulatory factor(s) had an apparent molecular weight of greater than 10 kDa. This growth-stimulatory activity was both heat and trypsin stable. Because the role of adipose tissue is to store and release lipids, we next tested whether lipids are released during medium conditioning. The lipid composition of the fat pad conditioned medium was characterized using both thin layer and gas liquid chromatography. These lipid analyses indicated that the fat pad pieces released significant amounts of fatty acids and phospholipids into the medium during the conditioning period. The free fatty acid composition included both saturated and unsaturated molecules, and about 80% of the total fatty acids consisted of palmitate, stearate, oleate, and linoleate. These same fatty acids were a structural component of the majority of phospholipid found in the medium. The addition of palmitate or stearate to defined medium had no effect or was inhibitory for CL-S1 proliferation, depending on the concentration used. Defined medium supplemented with oleate, arachidonate, or linoleate induced CL-S1 proliferation, and the inhibitory effects of palmitate and stearate were overcome by addition of oleate and linoleate. These data indicate that both unsaturated and saturated fatty acids are released from intact adipose cells of the mouse mammary fat pad and that fatty acids can influence the growth of prenoplastic mouse mammary epithelium. Thus, unsaturated fatty acids, perhaps in conjunction with other substances released simultaneously, are candidate molecules for the substances that mediate the effect of adipose tissue on growth of epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, L. W.; Danielson, K. B.; Hosick, H. L. A cell line established from premalignant mouse mammary tissue. In Vitro 15:841–843; 1979.

    Article  PubMed  CAS  Google Scholar 

  2. Bandyopadhyay, G. K.; Imagawa, W.; Wallace, D., et al. Linoleate metabolites enhance the in vitro proliferative response of mouse mammary epithelial cells to epidermal growth factor. J. Biol. Chem. 262:2750–2756; 1987.

    PubMed  CAS  Google Scholar 

  3. Beck, J. C.; Hosick, H. L. Growth of mouse mammary epithelium in response to serum-free media conditioned by mammary adipose tissue. Cell Biol. Int. Rep. 12:85–97; 1988.

    Article  PubMed  CAS  Google Scholar 

  4. Bligh, G. H.; Dyer, W. J. A rapid method of total lipid extraction and purification. J. Biochem. Physiol. 37:911–917; 1959.

    CAS  Google Scholar 

  5. Braden, L. M.; Carroll, K. K. Dietary polyunsaturated fat in relation to mammary carcinogenesis in rats. Lipids 21:285–288; 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Carrington, C. A.; Hosick, H. L. Effects of dietary fat on the growth of normal, preneoplastic, and neoplastic mammary epithelial cellsin vivo andin vitro. J. Cell Sci. 75:269–278; 1985.

    PubMed  CAS  Google Scholar 

  7. Carroll, K. K.; Kohr, H. Y. Effects of dietary fat and dose levels of 7,12-dimethylbenz(a)anthracene on mammary tumor incidence in rats. Cancer Res. 30:2260–2264; 1970.

    PubMed  CAS  Google Scholar 

  8. Chan, P. C.; Ferguson, K. A.; Dao, T. L. Effects of different dietary fats on mammary carcinogenesis. Cancer Res. 43:1079–1083; 1983.

    PubMed  CAS  Google Scholar 

  9. Chen, R. F. Removal of fatty acids from serum albumin by charcoal treatment. J. Biol. Chem. 242:173–181; 1967.

    PubMed  CAS  Google Scholar 

  10. DeOme, K. B.; Faulkin, L. S., Jr.; Bern, H. A., et al. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 19:515–520; 1959.

    PubMed  CAS  Google Scholar 

  11. Dulbecco, R.; Bologna, M.; Unger, M. Control of differentiation of a mammary cell line by lipids. Proc. Natl. Acad. Sci. USA 77:1551–1555; 1980.

    Article  PubMed  CAS  Google Scholar 

  12. Emerman, J. T.; Pitelka, D. R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 13:316–328; 1977.

    Article  PubMed  CAS  Google Scholar 

  13. Enami, J.; Enami, S.; Koga, M. Growth of normal and neoplastic mouse mammary epithelial cells in primary culture: stimulation by conditioned medium from mouse mammary fibroblasts. Gann 74:845–853; 1983.

    PubMed  CAS  Google Scholar 

  14. Faulkin, L. J.; DeOme, K. B. Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse. JNCI 24:953; 1960.

    PubMed  Google Scholar 

  15. Gordon, G. B. Prevention of saturated free fatty acid toxicity by unsaturated fatty acid. J. Cell Biol. 67:140a; 1975.

    Article  Google Scholar 

  16. Hallowes, R. C.; Bone, E. S.; Jones, W. A new dimension in the culture of human breast. In: Richards, R. J.; Rajan, K. T., eds. Tissue culture in medical research, II. Oxford: Pergamon Press; 1980:213–220.

    Google Scholar 

  17. Haslam, S. Z.; Levely, M. L. Estrogen responsiveness of normal mouse mammary cells in primary cell culture: association of mammary fibroblasts with estrogenic regulation of progesterone receptors. Endocrinology 116:1835–1844; 1985.

    PubMed  CAS  Google Scholar 

  18. Hopkins, G. J.; Carroll, K. K. Relationship between amount and type of dietary fat in promotion of mammary carcinogenesis by 7,12-dimethylbenzanthracene. JNCI 62:1009–1012; 1979.

    PubMed  CAS  Google Scholar 

  19. Hoshino, H. Morphogenesis and growth potentiality of mammary glands in mice. I. Transplantability and growth potentiality of mammary tissue in virgin mice. JNCI 29:835–851; 1962.

    PubMed  CAS  Google Scholar 

  20. Hoshino, K.; Martin, F. Parenchymal-stromal interactions during regeneration of mammary isografts in mice. Anat. Rec. 178:379; 1974.

    Google Scholar 

  21. Hosick, H. L. Uptake and utilization of free fatty acids supplied by liposomes to mammary tumor cells in culture. Exp. Cell Res. 122:127–136; 1979.

    Article  PubMed  CAS  Google Scholar 

  22. Hosick, H. L. Responses of normal and neoplastic mammary cells to phospholipid vesicles containing unesterified oleic acid. Cell. Mol. Biol. 24:363–368; 1979.

    CAS  Google Scholar 

  23. Imagawa, W. Lipid regulation of the growth of normal and tumor mouse mammary epithelial cells in serum-free collagen gel culture. Proceedings of the International Association of Breast Cancer Research, Denver, 1983: 58, abstract.

  24. Imagawa, W.; Bandyopadhyay, G.; Nandi, S. Phospholipids stimulate the proliferation of mouse mammary epithelial cells in primary culture. J. Cell Biol. 103:153a; 1986.

    Google Scholar 

  25. Imagawa, W.; Tomooka, Y.; Nandi, S. Serum-free growth of normal and tumor mouse mammary epithelial cells in primary culture. Proc. Natl. Acad. Sci. USA 79:4074–4077; 1982.

    Article  PubMed  CAS  Google Scholar 

  26. Jones, W.; Hosick, H. L. Collagen concentration as a significant variable for growth and morphology of mouse mammary parenchyma in collagen matrix culture. Cell Biol. Int. Rep. 10:277–286; 1986.

    Article  PubMed  CAS  Google Scholar 

  27. Kana-Sueoka, T.; Cohen, D. M.; Yamazumi, Z. Phosphoethanolamine as a growth factor of a mammary carcinoma cell line of rat. Proc. Natl. Acad. Sci. USA 76:5741–5744; 1979.

    Article  Google Scholar 

  28. Kana-Sueoka, T.; Errick, J. E. Effects of phosphoethanolamine and ethanolamine on growth of mammary carcinoma cells in culture. Exp. Cell Res. 136:137–145; 1981.

    Article  Google Scholar 

  29. Kidwell, W. R.; Knazek, R. A.; Vonderhaar, B. K., et al. Effects of unsaturated fatty acids on the development and proliferation of normal and neoplastic breast epithelium. In: Arnott, M. S.; vanEys, J.; Wang, Y.-M., eds. Molecular interactions of nutrition and cancer. New York: Raven Press; 1982:219–236.

    Google Scholar 

  30. Knazek, R. A.; Liu, S. C.; Bodwin, J. S., et al. Requirement of essential fatty acids in the diet for development of the mouse mammary gland. JNCI 64:377–382; 1980.

    PubMed  CAS  Google Scholar 

  31. Lasfargues, E. Y. Cultivation and behavior in vitro of the normal mammary epithelium of the adult mouse. II. Observations on the secretory activity. Exp. Cell Res. 13:553–562; 1957.

    Article  PubMed  CAS  Google Scholar 

  32. Lee, E. Y.-H.; Parry, G.; Bissell, M. J. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J. Cell Biol. 98:146–155; 1984.

    Article  PubMed  CAS  Google Scholar 

  33. Lee, E. Y.-H.; Lee, W.-H.; Kaetzel, C. S., et al. Interaction of mouse mammary epithelial cells with collagen substrata: Regulation of casein gene expression and secretion. Proc. Natl. Acad. Sci. USA 82:1419–1423; 1985.

    Article  PubMed  CAS  Google Scholar 

  34. Levine, J. F.; Stockdale, F. E. 3T3-L1 adipocytes promote the growth of mammary epithelium. Exp. Cell Res. 151:112–122; 1984.

    Article  PubMed  CAS  Google Scholar 

  35. Levine, J. F.; Stockdale, F. E. Cell-cell interactions promote mammary epithelial cell differentiation. J. Cell Biol. 100:1415–1422; 1985.

    Article  PubMed  CAS  Google Scholar 

  36. McGrath, C. M. Augmentation of the response of normal mouse mammary epithelial cells to estradiol by mammary stroma. Cancer Res. 43:1355–1360; 1983.

    PubMed  CAS  Google Scholar 

  37. Medina, D.; DeOme, K. B. Influence of mammary tumor virus on the tumor-producing capabilities of nodule outgrowth free of mammary tumor virus. JNCI 40:1303–1308; 1968.

    PubMed  CAS  Google Scholar 

  38. Metcalfe, L. D.; Schmitz, A. A.; Pelka, J. R. Rapid preparation of fatty esters from lipids for gas chromatographic analysis. Anal. Chem. 38:514–515; 1966.

    Article  CAS  Google Scholar 

  39. Michalopoulos, G.; Pitot, H. C. Prumary culture of parenchymal cells on collagen membranes. Exp. Cell Res. 94:70–78; 1975

    Article  PubMed  CAS  Google Scholar 

  40. Parry, G.; Lee, E. Y.-H.; Farson, D., et al. Collagenous substrata regulate the nature and distribution of glycosaminoglycans produced by differentiated cultures of mouse mammary epithelial cells. Exp. Cell Res. 156:487–499; 1985.

    Article  PubMed  CAS  Google Scholar 

  41. Richards, J.; Pasco, D.; Yang, J., et al. Comparison of the growth of normal and neoplastic mouse mammary cells on plastic, on collagen gels, and in collagen gels. Exp. Cell Res. 146:1–14; 1983.

    Article  PubMed  CAS  Google Scholar 

  42. Rogel, A. M.; Watkins, B. A. Liver subcellular fatty acid profiles of chicks fed diets containing hydrogenated fats and varying linoleate levels. Lipids 22:637–642; 1987.

    Article  PubMed  CAS  Google Scholar 

  43. Rudland, P. S.; Davies, A. C. T.; Tsao, S-W. Rat mammary preadipocytes in culture produce a trophic agent for mammary epithelia-Prostaglandin-E2. J. Cell. Physiol. 120:364–376; 1984.

    Article  PubMed  CAS  Google Scholar 

  44. Shannon, J. M.; Pitelka, D. R. The influence of cell shape on the induction of functional differentiation in mouse mammary cells in vitro. In Vitro 17:1016–1028; 1981.

    Article  PubMed  CAS  Google Scholar 

  45. Shier, W. T.; Durkin, J. P. Role of stimulation of arachidonic acid release in the proliferative response of 3T3 mouse fibroblasts to platelet-derived growth factor. J. Cell. Physiol. 112:171–181; 1982.

    Article  PubMed  CAS  Google Scholar 

  46. Shyamala, G.; Forenczy, A. Mammary fat pad may be a potential site for initiation of estrogen action in normal mouse mammary gland. Endocrinology 115:1078–1081; 1984.

    Article  PubMed  CAS  Google Scholar 

  47. Stampfer, M.; Hallowes, R. C.; Hacket, A. J. Growth of normal human mammary cells in culture. In Vitro 16:415–425; 1980.

    Article  PubMed  CAS  Google Scholar 

  48. Sylvester, P. W.; Ip, C.; Ip, M. M. Effects of high dietary fat on the growth and development of ovarian-independent carcinogen-induced mammary tumors in rats. Cancer Res. 46:763–769; 1986.

    PubMed  CAS  Google Scholar 

  49. Taga, M.; Sakakura, T.; Oka, T. Identification and partial characterization of mesenchyme-derived growth factor that stimulates proliferation and inhibits functional differentiation of mammary epithelium in culture. J. Cell Biol. 97:317a; 1983.

    Article  Google Scholar 

  50. Tannenbaum, A. The genesis and growth of tumors. III Effects of a high fat diet. Cancer Res. 2:468–475; 1942.

    CAS  Google Scholar 

  51. Welsh, C. W.; Aylsworth, C. F. Enhancement of murine mammary tumorigenesis by feeding high levels of dietary fat: a hormonal mechanism. JNCI 70:215–221; 1983.

    Google Scholar 

  52. Wicha, M. S.; Liotta, L. A.; Kidwell, W. R. Effects of free fatty acids on the growth of normal and neoplastic rat mammary epithelial cells. Cancer Res. 39:426–435; 1979.

    PubMed  CAS  Google Scholar 

  53. Wicha, M. S.; Lowrie, G.; Kohn, E., et al. Extracellular matrix promotes mammary epithelial growth and differentiation in vitro. Proc. Natl. Acad. Sci. USA 79:3213–3217; 1982.

    Article  PubMed  CAS  Google Scholar 

  54. Yang, J.; Richards, J.; Bowman, P., et al. Sustained growth and three-dimensional organization of primary mammary tumor epithelial cells embedded in collagen gels. Proc. Natl. Acad. Sci. USA 76:3401–3405; 1979.

    Article  PubMed  CAS  Google Scholar 

  55. Yang, J.; Guzman, R.; Richards, J., et al. Growth factor- and cyclic nucleotide-induced proliferation of normal and malignant mammary epithelial cells in primary culture. Endocrinology 107:34–41; 1980.

    Google Scholar 

  56. Yang, J.; Larson, L.; Flynn, D., et al. Serum-free primary culture of human normal mammary epithelial cells in collagen gel matrix. Cell Biol. Int. Rep. 6:969–975; 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by a grant from the American Institute for Cancer Research; grant CA 46885 from the National Institutes of Health, Bethesda, MD; and by State of Washington initiative 171.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, J.C., Hosick, H.L. & Watkins, B.A. Growth of epithelium from a preneoplastic mammary outgrowth in response to mammary adipose tissue. In Vitro Cell Dev Biol 25, 409–418 (1989). https://doi.org/10.1007/BF02624625

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624625

Key words

Navigation