Skip to main content
Log in

Confrontation of an invasive (MO4) and a noninvasive (MDCK) cell line with embryonic chick heart fragments in serum-free culture media

  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Confronting cultures of precultured embryonic chick heart fragments (PHF) with aggregates of malignant cells in vitro have been shown to be relevant for a number of aspects of tumor invasion in vivo. Preculture of the heart fragments, formation of cell aggregates and subsequent culture of confronting pairs have so far been done only in serum-containing culture media. We describe here confronting cultures of PHF with invasive MO4 mouse cell aggregates or noninvasive MDCK dog kidney cell aggregates in serum-free media. Heart fragments precultured in the absence of serum seemed to be necrotic after confronting culture in serum-free media. However, preculturing in media supplemented with 10% fetal bovine serum allowed us to do subsequent confronting cultures in absence of serum. Cell aggregates were also prepared in serum-containing medium. MO4 cells occupied and replaced the heart tissue within 4 d, whereas MDCK cells remained at the periphery, of the PHF. This indicates that serum-free confronting cultures can discriminate between invasive and noninvasive cells. The viability of individual PHF and cell aggregates cultured in the same way as in confrontations was ascertained by histology and by explantation and postculturing on a solid tissue culture substrate. Growth of the cultures was smaller in serum-free media than in media supplemented with 10% fetal bovine serum. The main advantage of serum-free culture conditions in vitro is the elimination of the influence of serum components on invasion, and the ability to examine the effect on invasion of drugs that are, susceptible to inactivation by serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attia, M. A.; Weiss, D. W. Immunology of spontaneous mammary carcinomas in mice. V. Acquired tumor resistance and enhancement in strain A mice infected with mammary tumor virus. Cancer Res. 26:1787–1800; 1966.

    PubMed  CAS  Google Scholar 

  2. Barnes, D.; Sato, G. Serum-free cell cultures: a unifying approach. Cell 22:649–655; 1980.

    Article  PubMed  CAS  Google Scholar 

  3. Baugh, R. J.; Schnebli, H. P. Role and potential therapeutic value of proteinase inhibitors in tissue destruction. In: Strauli, P.; Barrett, J. C.; Baici, A., eds. Proteinases in tumour invasion. EORTC Monograph, vol. 6. New York: Raven Press; 1980: 97–115.

    Google Scholar 

  4. Billiau, A.; Sobis, H.; Eyssen, H., et al. Non-infectious intracisternal A-type particles in a sarcoma-positive, leukemia-negative mouse cell line transformed by murine sarcoma virus (MSV). Arch. Gesamte Virusforsch. 43:345–351; 1973.

    Article  PubMed  CAS  Google Scholar 

  5. Florini, J. R.; Roberts, S. B. A serum-free medium for the growth of muscle cells in culture. In Vitro 15:983–992; 1979.

    Article  PubMed  CAS  Google Scholar 

  6. Florini, J. R.; Ewton, D. Z.; Evinger-Hodges, M. J., et al. Stimulation and inhibition of myoblast differentiation by hormones. In Vitro 20:942–958; 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Mann, H. B.; Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18:50–60; 1947.

    Google Scholar 

  8. Mareel, M. M. Is invasivenessin vitro characteristic of malignant cells? Cell Biol. Int. Rep. 3:627–640; 1979.

    Article  PubMed  CAS  Google Scholar 

  9. Mareel, M.; Kint, J.; Meyvisch, C. Methods of study of the invasion of malignant C3H-mouse fibroblasts into embryonic chick heartin vitro. Virchows Arch. [Cell Pathol.] 30:95–111; 1979.

    CAS  Google Scholar 

  10. Mareel, M. M.; De Bruyne, G. K.; Vandesande, F., et al. Immunohistochemical study of embryonic chick heart invaded by malignant cells in three-dimensional culture. Invasion Metastasis 1:195–204; 1981.

    PubMed  CAS  Google Scholar 

  11. Mareel, M.; Bruyneel, E.; De Bruyne, G., et al. Growth and invasion: separate activities of malignant MO4 cell populations in vitro. In: Galeotti, T.; Cittadini, A.; Neri, G., et al., eds. Membranes in tumour growth. Amsterdam: Elsevier Biomedical Press; 1982:223–232.

    Google Scholar 

  12. Mareel, M. M.; De Mets, M. Effect of microtubule inhibitors on invasion and on related activities of tumour cells. Int. Rev. Cytol. 90:125–168; 1984.

    Article  PubMed  CAS  Google Scholar 

  13. McRoberts, J. H.; Taub, M.; Saier, M. H., Jr. The Madin Darby canine kidney (MDCK) cell line. In: Sato, G., ed. Functionally differentiated cell lines. New York: Liss; 1981:117–139.

    Google Scholar 

  14. Meyvisch, C.; Mareel, M. Influence of implantation site of MO4 cell aggregates on formation of metastases. Cancer Metastasis Rev. 2:295–306; 1983.

    Article  PubMed  CAS  Google Scholar 

  15. Nadijcka, M. D.; Mohamed, N. Induction of beating in non-beating cardiomyocyte cultures by serum-free medium. In Vitro 20:270; 1984.

    Google Scholar 

  16. Romeis, B. Mikroskopische technik. Munich-Vienna: R. Oldenbourgh Verlag; 1968: 703–704.

    Google Scholar 

  17. Ruoslahti, E. Fibronectin in cell adhesion and invasion. Cancer Metastasis Rev. 3:43–51; 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Schroyens W.; Mareel, M. M.; Dragonetti, C. In vitro invasiveness of human bladder cancer from cell lines and biopsy specimens. Clin. Exp. Metastasis 1:153–162; 1982.

    Article  Google Scholar 

  19. Schroyens, W.; Bruyneel, E.; Tchao, R., et al. Comparison of invasiveness and non-invasiveness of two-epithelial cell lines in vitro. Invasion Metastasis 4:160–170; 1984.

    PubMed  CAS  Google Scholar 

  20. Springall, D. R.; Hacker, G. W.; Grimelius, L., et al. The potential of the immunogold-silver staining method for paraffin sections. Histochemistry 81:603–608; 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Taub, M.; Chuman, L.; Saier, M. H., et al. Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum-free medium. Proc. Natl. Acad. Sci. USA 76:3338–3342; 1979.

    Article  PubMed  CAS  Google Scholar 

  22. Taub, M.; Sato, G. Growth of kidney epithelial cells in hormone-supplemented, serum-free medium. J. Supramol. Struct. 11:207–216; 1979.

    Article  PubMed  CAS  Google Scholar 

  23. Thorgeirsson, U. P.; Turpeenniemi-Hujanen, T.; Neckers, L. M., et al. Protein synthesis but not DNA synthesis is required for tumor cell invasion in vitro. Invasion Metastasis 4:73–83; 1984.

    PubMed  CAS  Google Scholar 

  24. Woolley, D. E. Proteolytic enzymes of invasive cells. In: Mareel, M. M.; Calman, K. C., eds. Invasion: experimental and clinical implications. New York: Oxford University Press; 1984:228–251.

    Google Scholar 

  25. Yagev, S.; Heller, M.; Pinson, A. Changes in cytoplasmic and lysosomal enzyme activities in cultured rat heart cells: the relationship to cell differentiation and cell population in culture. In Vitro 20:893–898; 1984.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Fonds van de Sport Vereniging tegen de Kanker, Brussels, Belgium, and the Fonds voor Geneeskundig Wetenschappelijk Onderzoek Brussels, Belgium

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bracke, M.E., De Mets, M., Van Cauwenberge, R.M.L. et al. Confrontation of an invasive (MO4) and a noninvasive (MDCK) cell line with embryonic chick heart fragments in serum-free culture media. In Vitro Cell Dev Biol 22, 508–514 (1986). https://doi.org/10.1007/BF02621135

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02621135

Key words

Navigation