Skip to main content
Log in

Routine heat inactivation of serum reduces its capacity to promote cell attachment

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Heat inactivation (56°C for 40 min) of bovine calf serum was shown to diminish its capacity to promote the attachment of cells to plastic or glass surfaces. This effect was not observed in stationary cultures (culture dishes) but became manifest under conditions in which the cells were subjected to a small amount of liquid shear force, i.e. by growing cells in roller bottles or culture tubes. Of four cell lines tested on bovine calf serum (SV-BHK, BALB-3T3, CV-1, and FS-4) SV-BHK and CV-1 cells showed the greatest sensitivity to loss of attachment-promoting activity. Fetal bovine serum also seemed to be affected by heat inactivation but to a lesser degree than bovine calf serum. Treatment of vessel surfaces with either unheated calf serum or specific attachment factors (gelatin, poly-d-lysine, and fibronectin) greatly increased cell attachment in the presence of heat inactivated serum. Heat inactivation did not seem to affect the ability of cells to grow after attachment. Of the four cell lines tested, the normal human fibroblast line (FS-4) was shown to be most effective at conditioning medium and restoring its capacity to promote the attachment of all four cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnes, D. W.; Silnutzer, J. Isolation of human serum spreading factor. J. Biol. Chem. 258:12548–12552; 1983.

    PubMed  CAS  Google Scholar 

  2. Dickey, W. D.; Seals, C. M. Collagen cell attachment protein from rat hepatoma cells. Cancer Res. 41:4027–4030; 1981.

    PubMed  CAS  Google Scholar 

  3. Frommhagen, L. H.; Fudenberg, H. The role of aggregated γ-globulins in the anti-complementary activity of human and animal sera. J. Immunol. 89:336–343; 1962.

    PubMed  CAS  Google Scholar 

  4. Grinnell, F.; Hays, D. G. Cell adhesion and spreading factor. Similarity to cold insoluble globulin in human serum. Exp. Cell Res. 115:221–229; 1978.

    Article  PubMed  CAS  Google Scholar 

  5. Grinnell, F.; Feld, M. K. Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium. J. Biol. Chem. 257:4888–4893; 1982.

    PubMed  CAS  Google Scholar 

  6. Hayman, E. G.; Pierschbacher, M. D.; Ohgren, Y., et al. Vitronectin (serum spreading factor) is present at the cell surface and in tissues. Proc. Natl. Acad. Sci. USA 80:4003–4007; 1983.

    Article  PubMed  CAS  Google Scholar 

  7. Hughes, R. C.; Pena, S. D. J.; Clark, J., et al. Molecular requirements for the adhesion and spreading of hamster fibroblasts. Exp. Cell Res. 121:307–314; 1979.

    Article  PubMed  CAS  Google Scholar 

  8. Hynes, R. O.; Yamada, K. M. Fibronectins: multiplicational modular, glycoproteins. J. Cell Biol. 95:369–377; 1982.

    Article  PubMed  CAS  Google Scholar 

  9. Imbenotte, J.; Verger, C.; Sassa, S. Modulation of cell attachment to culture support by pH, fibronectin, hemin, and cobalt protoporphyrin. J. Cell Physiol. 124:358–362; 1985.

    Article  PubMed  CAS  Google Scholar 

  10. Ingham, K. C.; Brew, S. A.; Broekselmann, T. J., et al. Thermal stability of human plasma fibronectin and its constituent domains. J. Biol. Chem. 259:11901–11907; 1984.

    PubMed  CAS  Google Scholar 

  11. Klebe, R. J. Isolation of a collagen-dependent cell attachment factor. Nature 250:248–251; 1974.

    Article  PubMed  CAS  Google Scholar 

  12. Knox, P.; Griffiths, S. The distribution of cell spreading activities in sera: a quantitative approach. J. Cell Sci. 46:97–112; 1980.

    PubMed  CAS  Google Scholar 

  13. Knox, P. Kinetics of cell spreading in the presence of different concentrations of serum or fibronectin-depleted serum. J. Cell Sci. 71:51–59; 1984.

    PubMed  CAS  Google Scholar 

  14. Millis, A. J. T.; Hoyle, M. Fibroblast-conditioned medium contains cell surface proteins required for cell attachment and spreading. Nature 271:668–669; 1978.

    Article  PubMed  CAS  Google Scholar 

  15. Mosher, D. F. Distribution of a major surface-associated glycoprotein, fibronectin, in cultures of adherent cells. J. Supranol. Struct. 6:551–557; 1971.

    Article  Google Scholar 

  16. Nielsen, H; Svehag, S. E. Detection and differentiation of immune complexes and IgG aggregates by a complement consumption assay. Acta Pathol. Microbiol. Scand. Sect. C. 84:261–269; 1976.

    CAS  Google Scholar 

  17. Olden, K.; Yamada, K. M. Mechanism of the decrease in the major cell surface protein of chick embryo fibroblasts after transformation. Cell 11:957–969; 1972.

    Article  Google Scholar 

  18. Russell, W. C.; Newman, S.; Williamson, D. H. A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasmas. Nature 253:461–462; 1975.

    Article  PubMed  CAS  Google Scholar 

  19. Soltis, R. D.; Hasz, D.; Morris, J. J., et al., The effect of heat-inactivation of serum on aggregation of immunoglobins. Immunology 36:37–45; 1979.

    PubMed  CAS  Google Scholar 

  20. Thom, D.; Powell, A. J.; Rees, D. H. Mechanism of cellular adhesion IV. Role of serum glycoproteins in fibroblasts spreading on glass. J. Cell Sci. 35:281–305; 1979.

    PubMed  CAS  Google Scholar 

  21. Vaheri, A.; Ruoslahti, E. Fibroblast surface antigen produced but not retained by virus-transformed human cells. J. Exp. Med. 142:530–535; 1975.

    Article  PubMed  CAS  Google Scholar 

  22. Vuento, M.; Korkolainen, M.; Kuusela, P., et al. Isolation of a novel cell-attachment and spreading-promoting protein from human serum. Biochem. J. 227:421–427; 1985.

    PubMed  CAS  Google Scholar 

  23. Ward, R. L. Destruction of bacterial viruses in serum by heat and radiation under conditions that sustain the ability of serum to support growth of cells in suspended culture. J. Clin. Microbiol. 10:650–656; 1979.

    PubMed  CAS  Google Scholar 

  24. Whately, J. G.; Knox, P. Isolation of a serum component that stimulates the spreading of cells in culture. Biochem. J. 185:349–354; 1980.

    Google Scholar 

  25. Yamada, K. M.; Hayashi, M.; Akiyama, S. K. Structure and function of fibronectin. In: Hawkes, S.; Wang, J. L., eds. Extra cellular matrix. New York: Academic Press, 1982:25–34.

    Google Scholar 

  26. Yamada, M.; Ikegami, N.; Okegami, T. Proteins from fibroblast conditioned medium mediate and enhance cell adhesion, spreading and growth. Proc. Jpn. Acad. 58B:160–164; 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by VECOL, Inc., Bogata, Columbia and by grant SRC 5 U24 RR02557-02 from the National Institutes of Health, Bethesda, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giard, D.J. Routine heat inactivation of serum reduces its capacity to promote cell attachment. In Vitro Cell Dev Biol 23, 691–697 (1987). https://doi.org/10.1007/BF02620982

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02620982

Key words

Navigation