Skip to main content

Common Reagents and Medium for Mammalian Cell Culture

Practical Approach to Mammalian Cell and Organ Culture

Abstract

This chapter describes all common materials and reagents necessary for mammalian cell culture. Mammalian cells are normally present in tissues and organs. These cells attach to the extracellular matrix (ECM). So, cell-dissociating agents are highly essential to detach cells from the tissues/organs. Most mammalian cells are adherent in nature, except for some blood cells (e.g., B and T lymphocytes). The next important material needed for mammalian cell culture is cell adhesive agents which are extremely essential for the attachment of mammalian cells with culture vessels (Petri plate/flasks). The most important material necessary for mammalian cell culture is the medium and its various necessary constituents. A complete cell culture medium contains all the necessary materials needed for the proliferation and growth of mammalian cells such as carbohydrates (e.g., glucose), protein/peptides (e.g., amino acids), lipids (fatty acids and glycerol), minerals, vitamins, hormones, growth factors, cytokines, and other materials. One of the most important components of the cell culture medium is a fetal bovine serum (FBS) or fetal calf serum (FCS) which contains many of the constituents of the mammalian cell culture medium. However, low serum or serum-free media are also used in particularly large-scale cell cultures for industrial purposes. The need for the above-mentioned materials and their relative quantity may vary from one type of cell to another, and therefore, various types of cell culture media have been developed with varying compositions. Finally, various buffers necessary for isolation, culture, and maintenance of mammalian cells are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen A, Snow C. The effect of trypsin and ethylene-diamine-tetra acetate on the surface of cells in tissue culture. Biochem J. 1970;117:32.

    Google Scholar 

  • Barnes D, Sato G. Growth of a human mammary tumor cell line in a serum-free medium. Nature. 1979;281:388–9.

    CAS  PubMed  Google Scholar 

  • Barnes D, Sato G. Serum-free cell culture: a unifying approach. Cell. 1980;22:649–55.

    CAS  PubMed  Google Scholar 

  • Bottenstein J, Hayashi I, Hutchings SH, Masui H, Mather J, McClure DB, et al. The growth of cells in serum free hormone supplemented media. Methods Enzymol. 1979;58:94–109.

    CAS  PubMed  Google Scholar 

  • Brunner D, Frank J, Appl H, Schoffl H, Pfaller W, Gstraunthaler G. Serum-free cell culture: the serum-free media interactive online database. ALTEX. 2010;27:53–62.

    PubMed  Google Scholar 

  • Carrel A. On the permanent life of tissues outside of the organism. J Exp Med. 1912;15:516–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrel A, Baker LE. The chemical nature of substances required for cell multiplication. J Exp Med. 1926;44:503–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cinatl J. Inorganic-organic multimolecular complexes of salt solutions, culture media and biological fluids and their possible significance for the origin of life. J Theor Biol. 1969;23:1–10.

    CAS  PubMed  Google Scholar 

  • Curtis ASG. Cell contact and adhesion. Biol Rev. 1962;37:82.

    CAS  PubMed  Google Scholar 

  • Curtis ASG, Forrester JV, McInnes C, Lawrie F. Adhesion of cells to polystyrene surfaces. J Cell Biol. 1983;97:1500–6.

    CAS  PubMed  Google Scholar 

  • Dalen H, Todd PW. Surface morphology of trypsinized human cells in vitro. Exp Cell Res. 1971;1971(66):353.

    Google Scholar 

  • Darling DC, Morgan SJ. Animal cells: culture and media. New York: Wiley; 1994.

    Google Scholar 

  • Eagle H. Nutrition needs of mammalian cells in tissue culture. Science. 1955;122:501–14.

    CAS  PubMed  Google Scholar 

  • Eagle H. The salt requirements of mammalian cells in tissue culture. Arch Biochem Biophys. 1956;2:356–66.

    Google Scholar 

  • Eagle H. Buffer combinations for mammalian cell culture. Science. 1971;174:500–3.

    CAS  PubMed  Google Scholar 

  • Eisenblatter T, Psathaki K, Nitz T, Galla H, Wegener J. Cell culture media: selection and standardization. In: Lehr CM, editor. Cell culture models of biological barriers in-vitro test systems for drug absorption and delivery. London: Taylor & Francis; 2002. p. 20–40.

    Google Scholar 

  • Fischer A, Astrup T, Ehrensvard G, Oehlenschlager V. Growth of animal tissue cells in artificial media. Proc Soc Exp Biol Med. 1948;67:40–6.

    CAS  PubMed  Google Scholar 

  • Freshney RI. Defined media and supplements. In: Freshney RI, editor. Culture of animal cells. Hoboken: Wiley; 2010. p. 99–114.

    Google Scholar 

  • Guilbert LJ, Iscove NN. Partial replacement of serum by selenite, transferrin, albumin and lecithin in haemopoitec cell cultures. Nature. 1976;263:594–5.

    CAS  PubMed  Google Scholar 

  • Ham RG. Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc Natl Acad Sci U S A. 1965;53:288–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ham RG, McKeehan WL. Media and growth requirements. Methods Enzymol. 1979;58:44–93.

    CAS  PubMed  Google Scholar 

  • Hamilton WG, Ham RG. Clonal growth of Chinese hamster cell lines in protein-free media. In Vitro Cell Dev Biol. 1977;13:537–47.

    CAS  Google Scholar 

  • Heng BC, Cowan CM, Basu S. Comparison of enzymatic and non-enzymatic means of dissociating adherent monolayers of mesenchymal stem cells. Biol Proc Online. 2009;11:161–9.

    CAS  Google Scholar 

  • Hewlett G. Strategies for optimising serum-free media. Cytotechnology. 1991;5:3–14.

    CAS  PubMed  Google Scholar 

  • Hornsby P, Sturek M, Harris S, Simonian M. Serum and growth factor requirements for proliferation of human adrenocortical cells in culture: comparison with bovine adrenocortical cells. In Vitro. 1983;19:863–9.

    CAS  PubMed  Google Scholar 

  • Hosios AM, Hecht VC, Danai LV, Johnson MO, Rathmell JC, Steinhauser ML, Manalis SR, Vander Heiden MG. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev Cell. 2016;36(5):540–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howorth P. The physiological assessment of acid-base balance. Br J Dis Chest. 1975;69:75–102.

    CAS  PubMed  Google Scholar 

  • Iscove NN, Melchers F. Complete replacement of serum by albumin, transferrin, and soybean lipid in cultures of lipopolysaccharide-reactive B-lymphocytes. J Exp Med. 1978;147:923–33.

    CAS  PubMed  Google Scholar 

  • Jacoby F, Darke SJ. Animal tissue culture with a synthetic medium. Nat. 1948;161:768–9.

    CAS  Google Scholar 

  • Karmiol S. Development of serum free media. In: Master JRW, editor. Animal cell culture. 3rd ed. Oxford: Oxford University Press; 2000.

    Google Scholar 

  • Keen MJ, Rapson NT. Development of a serum-free culture medium for the large scale production of recombinant protein from a Chinese hamster ovary cell line. Cytotechnology. 1995;17:153–63.

    CAS  PubMed  Google Scholar 

  • Lewis MR. The importance of dextrose in the medium of tissue cultures. J Exp Med. 1922;35:317–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macy ML, Shannon JE. Preparation of medium ATCC-CRCM30. TCA Manual. 1977;3:617–22.

    Google Scholar 

  • Masters J, Stacey G. Changing medium and passaging cell lines. Nat Protoc. 2007;2:2276–84.

    CAS  PubMed  Google Scholar 

  • Mather JP. Making informed choices: medium, serum, and serum-free medium. Methods Cell Biol. 1998;57:19–30.

    CAS  PubMed  Google Scholar 

  • Merten OW. Safety issues of animal products used in serum-free media. Dev Biol Stand. 1999;99:167–80.

    CAS  PubMed  Google Scholar 

  • Moore GE, Gerner RE, Franklin HA. Culture of normal human leukocytes. JAMA. 1967;199(8):519–524.

    Google Scholar 

  • Morgan JF, Morton HJ, Parker RC. Nutrition of animal cells in tissue culture. I. Initial studies on a synthetic medium. Exp Biol Med. 1950;73:1–8.

    CAS  Google Scholar 

  • Murakami H. Serum-free media used for cultivation of hybridomas. Adv Biotechnol Processes. 1989;11:107–41.

    CAS  PubMed  Google Scholar 

  • Murakami H, Masui H, Sato GH, Sueoka N, Chow TP, Kano-Sueoka T. Growth of hybridoma cells in serum-free medium: ethanolamine is an essential component. Proc Natl Acad Sci U S A. 1982;79:1158–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neuman RE, McCoy TA. Growth-promoting properties of pyruvate, oxaloacetate, and α-ketoglutarate for isolated Walker carcinosarcoma 256 cells. Exp Biol Med. 1958;98:303–6.

    CAS  Google Scholar 

  • Parker RC. Chemically defined media. In: Parker RC, editor. Methods of tissue culture. New York: Harper & Row; 1961. p. 62–80.

    Google Scholar 

  • Perlman D. Use of antibiotics in cell culture media. Methods Enzymol. 1979;58:110–6.

    CAS  PubMed  Google Scholar 

  • Ramsey WS, Hertl W, Nowlan ED, Binkowski NJ. Surface treatments and cell attachment. In Vitro. 1984;20:802–8.

    CAS  PubMed  Google Scholar 

  • Seifert WE, Rudland PS. Possible involvement of cyclic GMP in growth control of cultured mouse cells. Nat. 1974;248:138.

    CAS  Google Scholar 

  • von Seefried A, Macmorine H. The use of foetal, calf and adult bovine sera for the growth of serially subcultivated diploid cells. Dev Biol Stand. 1976;37:83–9.

    Google Scholar 

  • Waymouth, C. Rapid proliferation of sublines of NCTC clone 929 (strain L) mouse cells in a simple chemically defined medium (MB752/1). J Nat Cancer Inst. 1959;22:1003–1017.

    Google Scholar 

  • Waymouth C. Osmolality of mammalian blood and of media for culture of mammalian cells. In Vitro. 1970;6:109–27.

    CAS  PubMed  Google Scholar 

  • White PR. Cultivation of animal tissues in vitro in nutrients of precisely known constitution. Growth. 1946;10:231–89.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mukherjee, S., Malik, P., Mukherjee, T.K. (2023). Common Reagents and Medium for Mammalian Cell Culture. In: Mukherjee, T.K., Malik, P., Mukherjee, S. (eds) Practical Approach to Mammalian Cell and Organ Culture. Springer, Singapore. https://doi.org/10.1007/978-981-19-1731-8_4-2

Download citation

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Common Reagents and Medium for Mammalian Cell Culture
    Published:
    20 January 2023

    DOI: https://doi.org/10.1007/978-981-19-1731-8_4-2

  2. Original

    Common Reagents and Medium for Mammalian Cell Culture
    Published:
    10 December 2022

    DOI: https://doi.org/10.1007/978-981-19-1731-8_4-1