Skip to main content
Log in

A model for tumorigenicity and metastatic potential: Growth in 1.0% agar cultures

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

We developed a method to determine the amount of work performed by cells through cell division in 1.0% agar cultures. There was no correlation between the cloning efficiencies of 1.0 and 0.3% agar cultures. Growth in 1.0% agar cultures correlated well with such malignant properties as tumorigenicity and the invasive and metastatic potentials. Our method revealed that metastatic MC and F cell lines possess different means of taking advantage of energy to proliferate against an environmental pressure from those possesed by nontumorigenic (ME and T-C3H) cell strain/line or nonmetastatic but tumorigenic (L, MR, and magc1) cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asronson, S. A.; Todaro, G. J.. Basis for the acquisition of malignant potential by mouse cells cultivated in vitro. Science 162:1024–1026; 1968.

    Article  Google Scholar 

  2. Colburn, N. H.; VorderBruegge W. F.; Bates, J. R., et al. Correlation of anchorage-independent growth with tumorigenicity of chemically transformed mouse epidermal cells. Cancer Res. 38:624–634; 1978.

    PubMed  CAS  Google Scholar 

  3. DiRenzo, M. F.; Brett, S. Characterization of stable spontaneous metastatic variant lines of RSV transformed mouse fibroblasts. Int. J. Cancer 30:751–757; 1982.

    Article  CAS  Google Scholar 

  4. Ferenczy, A.; Gelfand, M. M.. Steroid-induced regression in endometrial cancer. In: Stoll, B.A., ed. Prolonged arrest of cancer. New horizons in oncology, vol. 1. New York: John Wiley & Sons; 1982:369–385.

    Google Scholar 

  5. Freedman, V. H.; Shin, S. Cellular tumorigenicity in nude mice: Correlation with cell growth in semisolid medium. Cell 3:353–359; 1974.

    Article  Google Scholar 

  6. Gimbrone, M. A. Jr.; Cotran, R. S.; Leapman, S. B., et al. An experimental model using the rabbit cornea. JNCI 52:413–427; 1974.

    PubMed  Google Scholar 

  7. Hirai, N. The gel-elasticity I. J. Chem. Soc. Jpn. 72:837–840; 1951.

    CAS  Google Scholar 

  8. Klein, G. Immunological surveillance against neoplasia. In: Harvey lectures (New York) Series 69; 1975: 71–102.

  9. Liotta, L. A. Tumor invasion and metastasis—role of the extracellular matrix: Rhoads Memorial Award Lecture. Cancer Res. 46:1–7; 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Macpherson, I.; Montagnier, L. Agar suspension culture for the selective assay of cells transformed by polyoma virus. Virology 23:291–294; 1964.

    Article  PubMed  CAS  Google Scholar 

  11. Nakagawa, T.; Danno, T. On the gel state II. J. Chem. Soc. Jpn. 72:518–520; 1951.

    CAS  Google Scholar 

  12. Perbal, I. B. Transformation parameters expressed by tumor virus transformed cells. In: Klein, G., ed. Advances in viral oncology, vol. 4 New York: Raven Press; 1984: 163–195.

    Google Scholar 

  13. Petricciani, J. C.; Levenbook, I.; Locke, R. Human muscle: a model for the study of human neoplasia. Invest. New Drugs 1:297–302; 1983.

    Article  PubMed  CAS  Google Scholar 

  14. Saiga, T.; Adachi, T.; Okamoto, E., et al. An improved method for calculating colony forming ability in soft agar with special reference to malignancy. Experientia 37:310–312; 1981.

    Article  PubMed  CAS  Google Scholar 

  15. Saiga, T.; Horie, K.; Tabuchi, K., et al.. Mathematical models of cell variation seen in a heterogeneous malignant cell population. Exp. Pathol. 28:21–30; 1985.

    PubMed  CAS  Google Scholar 

  16. Saiga, T.; Wierenga, D. E.; Levenbook, I., et al.. Comparison of the colony forming ability and invasive potential of six primate cell lines treated with retinoic acid. Invest. New Drugs 4:25–29; 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Stoker, M. Abortive transformation by polyoma virus. Nature 218:234–238; 1968.

    Article  PubMed  CAS  Google Scholar 

  18. Thorgeirsson, U. P.; Turpeenniemi-Hujanen, T.; Neckers, L. M. et al. Protein synthesis but not DNA synthesis is required for tumor cell invasion in vitro. Invas. Metast. 4:73–84; 1984.

    CAS  Google Scholar 

  19. Tsao, M. S.; Earp, H. S.; Grisham, J. W. Gradation of carcinogen-induced capacity for anchorage independent growth in cultured rat liver epithelial cells. Cancer Res. 45:4428–4432; 1985.

    PubMed  CAS  Google Scholar 

  20. Tsao, M. S.; Grisham, K. K.; Nelson, K. G. Clonal analysis of tumorigenicity and paratumorigenic phenotypes in rat liver epithelial cells chemically transformed in vivo. Cancer Res. 45:5139–5144; 1985.

    PubMed  CAS  Google Scholar 

  21. Tucker, R. N.; Sanford, K. K.; Handleman, S. L., et al. Colony morphology and growth in agarose as tests for spontaneous neoplastic transformation in vitro. Cancer Res. 37:1571–1579; 1977.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saiga, T., Ohbayashi, T., Tabuchi, K. et al. A model for tumorigenicity and metastatic potential: Growth in 1.0% agar cultures. In Vitro Cell Dev Biol 23, 850–854 (1987). https://doi.org/10.1007/BF02620964

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02620964

Key words

Navigation