Skip to main content
Log in

Role of iron chelators in growth-promoting effect on mouse hybridoma cells in a chemically defined medium

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

The role of various iron chelators on the multiplication of mouse hybridoma cells in an albumin-free, transferrin-deficient defined medium was investigated. Fe(III)-dihydroxyethylglycine, Fe(III)-glycylglycine, Fe(III)-ethylenediamine-N,N′-dipropionic acid, or Fe(III)-iminodiacetic acid supported the excellent growth of the cells. In addition, the growth of the iron-starved cells, which had been preincubated in a protein-, iron- and chelator-free defined medium, restored rapidly when the medium was supplemented with holotransfeerrin, ferric iron, and chelator compared to that when supplemented with holotransferin, but without iron and chelator. The results suggest that such chelators modulate a progression of transferrn cycle in the presence of transferin and ferric iron. An alternative explantation is that there is a decrease in generation of iron-catalyzed free radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aisen, P.; Listowsky, I. Iron transport and storage proteins. Ann. Rev. Biochem. 49: 357–393; 1980.

    Article  PubMed  CAS  Google Scholar 

  2. Barnes, D.; Sato, G. Serum-free cell cultures; a unifying approach. Cell 22:649–655; 1980.

    Article  PubMed  CAS  Google Scholar 

  3. Basset, P.; Quesneau, Y.; Zwiller, J. Iron-induced L1210 cells growth: evidence of a transferrin-independent iron transport. Cancer Res. 46:1644–1647; 1986.

    PubMed  CAS  Google Scholar 

  4. Bishop, C. T.; Mirza, Z.; Crapo, J. D., et al. Free radical damage to cultured porcine aortic endothelial cells and lung fibroblasts: modulation by culture conditions. In Vitro 21:229–236; 1985.

    CAS  Google Scholar 

  5. Bowman, C. M.; Berger, E. M.; Butler, E. N., et al. HEPES may stimulate cultured endothelial cells to make growth-retarding oxygen metabolites. In Vitro 21:140–142; 1985.

    CAS  Google Scholar 

  6. Bridges, K. R.; Cudkowicz, A. Effect of iron chelators on the transferrin receptors in K562 cells. J. Biol. Chem. 259:12970–12977; 1984.

    PubMed  CAS  Google Scholar 

  7. Bullen, J. J. The significance of iron in infection. Rev. Infect. Dis. 3:1127–1138; 1981.

    PubMed  CAS  Google Scholar 

  8. Friedberg, F. Albumin as the major metal transport agent in blood. FEBS Lett. 59:140–141; 1975.

    Article  PubMed  CAS  Google Scholar 

  9. Good, N. E.; Winget, G. D.; Winter, W., et al. Hydrogen ion buffers for biological research. Biochemistry 5:467–477; 1966.

    Article  PubMed  CAS  Google Scholar 

  10. Graf, E.; Mahoney, J. R.; Bryant, R. G., et al. Iron catalyzed hydroxyl radical formation: sringent requirement for free iron coordination site. J. Biol. Chem. 259:3120–3124; 1984.

    Google Scholar 

  11. Gutteridge, J. M. C.; Paterson, S. K.; Segal, A. W., et al. Inhibition of lipid peroxidation by the iron-binding protein lactoferrin. Biochem. J. 199:259–261; 1981.

    PubMed  CAS  Google Scholar 

  12. Kan, M.; Yamane, I. In vitro proliferation and lifespan of human diploid fibroblasts in serum-free BSA-containing medium. J. Cell Physiol. 111: 155–162; 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Kaplan, S. S.; Quie, P. G.; Basford, R. E. Effect of iron on leukocyte function: nactivation of H2O2 by iron. Infect. Immun. 12:303–308; 1975.

    PubMed  CAS  Google Scholar 

  14. Karin, M.; Mintz, B. Receptor-mediated endocytosis of transferrn in developmentally totipotent mouse teratocarcinoma stem cells. J. Biol. Chem. 256:3245–3252; 1981.

    PubMed  CAS  Google Scholar 

  15. Kay, G. F.; Ellem, K. A. O. Nonhaem complexes of FeIII stimulate cell attachment and growth by a mechanism different from that of serum, 2-oxocarboxylates, and haemproteins. J. Cell. Physiol. 126:275–284; 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Mather, J.; Wu, R.; Sato, G. The role of hormones in the growth and regulation of cells in a serum-free medium. In: Waymouth, C.; Ham, R. G.; Chapple, P. J., eds. The growth requirements of vertebrate cells in vitro. England: Cambridge University Press; 1981:244–251.

    Google Scholar 

  17. Rasmussen, L.; Toftlund, H. Phosphate compounds as iron chelators in animal cell cultures. In Vitro 22:177–179; 1986.

    CAS  Google Scholar 

  18. Rudland, R. S.; Durbin, H.; Clingan, D., et al. Iron salts and transferrin are specifically required for cell division of cultured 3T6 cells. Biochem. Biophys. Res. Commun. 75:556–562; 1977.

    Article  PubMed  CAS  Google Scholar 

  19. Shipman, C. Evaluation of 4-(2-hydroxyethyl)-1-piperazne-ethanesulfonic acid (HEPES) as a tissue culture buffer. Proc. Soc. Exp. Biol. Med. 130:305–310; 1969.

    PubMed  CAS  Google Scholar 

  20. Spiro, T. G.; Allerton, S. E.; Renner, J., et al. The hydrolytic polymerization of iron(III). J. Am. Chem. Soc. 88:2721–2726; 1966.

    Article  CAS  Google Scholar 

  21. Van Asbeck, B. S.; Marx, J. J. M.; Struyvenberg, A., et al. Effect of iron(III) in the presence of various ligands on the phagocytic and metabolic activity of human polymorphonuclear leukocytes. J. Immunol. 132: 851–856; 1984.

    PubMed  Google Scholar 

  22. Van Renswoude, J.; Bridges, K. R.; Harford, J. B., et al. Receptor-mediated endocytosis of transferrin and the uptake of Fe in K562 cells: identification of a nonlysosomal acidic compartment. Proc. Natl. Acad. Sci. USA 79:6186–6190; 1982.

    Article  PubMed  Google Scholar 

  23. Ward, C. G.; Hammond, J. S.; Bullen, J. J. Effect of iron compounds on antibacterial function of human polymorphs and plasma. Infect. Immun. 51:723–730; 1986.

    PubMed  CAS  Google Scholar 

  24. Williams, A.; Pugh, A.; Hoy, T. G., et al. Screening for iron chelating drugs. In: Saltman, P.; Hegenauer, J., eds. The biochemistry and physiology of iron. Amsterdam: Elsevier North Holland, Inc.; 1982:199–204.

    Google Scholar 

  25. Yabe, N.; Matsuya, Y.; Yamane, I., et al. Enhanced formation of mouse hybridomas without HAT treatment in a serum-free medium. In Vitro 22: 363–368; 1996.

    Google Scholar 

  26. Yamane, I.; Murakami, O.; Kato, M. Role of bovine serum albumin in a serum-free suspension cell culture medium. Proc. Soc. Exp. Biol. Med. 149: 439–442; 1975.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yabe, N., Kato, M., Matsuya, Y. et al. Role of iron chelators in growth-promoting effect on mouse hybridoma cells in a chemically defined medium. In Vitro Cell Dev Biol 23, 815–820 (1987). https://doi.org/10.1007/BF02620959

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02620959

Key words

Navigation