Skip to main content
Log in

Insulin binding in cultured Chinese hamster kidney epithelial cells: The effect of serum in the medium

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

[125I]Insulin (porcine) binding to an epithelial cell line established from a Chinese hamster kidney, CHK-ACE−100, showed an optimum at pH 8.0 and reached a maximum after 2.5 h incubation at 25°C. Dissociation of bound [125I]insulin was facilitated by the addition of unlabeled insulin in the dilution buffer. Porcine insulin effectively competed for [125I]insulin binding to the cultured cells and was 30 and 90 times as potent as guinea pig insulin and porcine proinsulin in causing 50% inhibition of [125I]insulin binding; glucagon was completely ineffective. Scatchard analysis of the binding data yielded a curvilinear plot and a capacity of 0.6 ng/106 cells; the average affinity of the empty receptor,\(\bar K_e \), was calculated to be 1.78×108 M −1 and that of the filled receptor,\(\bar K_f \), 0.57×108 M −1.

Substitution of fetal bovine serum (FBS) in the culture medium with bovine calf, bovine newborn, or bobby calf serum altered insulin binding characteristics in the cells and reduced cell growth. Insulin binding characteristics of cells grown in hormone-supplemented medium containing 0 to 0.1% FBS were similar to those of cells grown in minimum essential medium (MEM) containing 2 to 5% FBS. The data indicated that the established Chinese hamster kidney epithelial cell line CHK-ACE−100 possessed specific insulin receptors and the characteristics of the receptors could be manipulated by changing the serum in culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gavin, J. R. III; Gorden, P.; Roth, J.; Archer, J. A.; Buell, D. N. Characteristics of the human lymphocyte insulin receptor. J. Biol. Chem. 248: 2202–2207; 1973.

    PubMed  CAS  Google Scholar 

  2. Pollet, R. J.; Standaert, M. L.; Haase, B. A. Insulin binding to the human lymphocyte receptor. J. Biol. Chem. 252: 5828–5834; 1977.

    PubMed  CAS  Google Scholar 

  3. Carpentier, J.-L.; Gorden, P.; Amherdt, M.; van Obberghen, E.; Kahn, C. R.; Orci, L.125I-Insulin binding to cultured human lymphocytes. J. Clin. Invest. 61: 1057–1070; 1978.

    PubMed  CAS  Google Scholar 

  4. Sonne, O.; Gliemann, J. Insulin receptors of cultured human lymphocytes. J. Biol. Chem. 255: 7449–7454; 1980.

    PubMed  CAS  Google Scholar 

  5. Robinson, T. J.; Archer, J. A.; Gambhir, K. K.; Hollis, V. W. Jr.; Carter, L.; Bradley, C. Erythrocytes: A new cell type for the evaluation of insulin receptor defects in diabetic humans. Science 205: 200–202; 1979.

    Article  PubMed  CAS  Google Scholar 

  6. Hajek, A. A.; Joist, J. H.; Baker, R. K.; Jarett, L.; Daughaday, W. H. Demonstration and partial characterization of insulin receptors in human platelets. J. Clin. Invest. 63: 1060–1065; 1979.

    Article  PubMed  CAS  Google Scholar 

  7. Mott, D. M.; Howard, B. V.; Bennett, P. H. Stoichiometric binding and regulation of insulin receptors on human diploid fibroblasts using physiologic insulin levels. J. Biol. Chem. 254: 8762–8767; 1979.

    PubMed  CAS  Google Scholar 

  8. Raizada, M. K.; Tan, G.; Fellows, R. E. Fibroblastic cultures from diabetic db/db mouse: Demonstration of decreased insulin receptors and impaired response to insulin. J. Biol. Chem. 255: 9149–9156; 1980.

    PubMed  CAS  Google Scholar 

  9. Thomopoulos, P.; Pessac, B. Insulin receptors in cultured mouse retinal cells. Diabetologia 16: 275–279; 1979.

    Article  PubMed  CAS  Google Scholar 

  10. Freychet, P.; Roth, J.; Neville, D. M. Jr. Insulin receptors in the liver: Specific binding of125I-insulin to the plasma membrane and its relation to insulin bioactivity. Proc. Natl. Acad. Sci. USA 68: 1833–1837; 1971.

    Article  PubMed  CAS  Google Scholar 

  11. Gammeltoft, S.; Kristensen, L. O.; Sestoft, L. Insulin receptors in isolated rat hepatocytes. J. Biol. Chem. 253: 8406–8413; 1978.

    PubMed  CAS  Google Scholar 

  12. Cuatrecasas, P. Insulin-receptor interactions in adipose tissues cells: Direct measurement and properties. Proc. Natl. Acad. Sci. USA 68: 1264–1268; 1971.

    Article  PubMed  CAS  Google Scholar 

  13. Gammeltoft, S.; Gliemann, J. Binding and degradation of125I-insulin by isolated fat cells. Biochim. Biophys. Acta 320: 16–32; 1973.

    PubMed  CAS  Google Scholar 

  14. Wheeler, F. B.; Santora, A. C. II; Elsas, L. J. II. Evidence supporting a two-receptor model for insulin binding by cultured embryonic heart cells. Endocrinology 107: 195–206; 1980.

    PubMed  CAS  Google Scholar 

  15. Eckel, J.; Reinauer, H. Characteristics of insulin receptors in the heart muscle. Binding of insulin to isolated muscle cells from adult rat heart. Biochim. Biophys. Acta 629: 510–521; 1980.

    PubMed  CAS  Google Scholar 

  16. Stuart, C. A.; Furlanetto, R. W.; Lebovitz, H. E. The insulin receptor of embryonic chicken cartilage. Endocrinology 105: 1293–1302; 1979.

    PubMed  CAS  Google Scholar 

  17. Blanchard, R. F.; David, P. J.; Blas, S. D. Physical characteristics of insulin receptors on renal cell membranes. Diabetes 27: 88–95; 1978.

    PubMed  CAS  Google Scholar 

  18. Duckworth, W. C. Insulin and glucagon binding and degradation by kidney cell membranes. Endocrinology 102: 1766–1774; 1978.

    PubMed  CAS  Google Scholar 

  19. Kurokawa, K.; Lerner, R. L. Binding and degradation of insulin by isolated renal cortical tubules. Endocrinology 106: 655–662; 1980.

    PubMed  CAS  Google Scholar 

  20. Chang, A. Y.; Wyse, B. M. Acid glycohydrolase in Chinese hamster with spontaneous diabetes. VII. The lack of short term glucose effect in cultured kidney cells. Biochim. Biophys. Acta 672: 239–247; 1981.

    PubMed  CAS  Google Scholar 

  21. Taub, M.; Chuman, L.; Saier, M. H. Jr.; Sato, G. Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone supplemented serum-free medium. Proc. Natl. Acad. Sci. USA 76: 3338–3342; 1979.

    Article  PubMed  CAS  Google Scholar 

  22. DeMeyts, P.; Roth, J. Cooperativity in ligand binding: A new graphic analysis. Biochem. Biophys. Res. Commun. 66: 1118–1126; 1975.

    Article  CAS  Google Scholar 

  23. Wyse, B. M.; Chang, A. Y. Insulin binding in cultured Chinese hamster kidney epithelial cells. The effects of glucose concentration in the medium and tunicamycin. Biochim. Biophys. Acta. 667: 57–62; 1981.

    Google Scholar 

  24. Pacold, S. T.; Blackard, W. G. Central nervous system and insulin receptors in normal and diabetic rats. Endocrinology 105: 1452–1457; 1979.

    Article  PubMed  CAS  Google Scholar 

  25. DeMeyts, P.; Bianco, A. R.; Roth, J. Site to site interactions among insulin receptors. J. Biol. Chem. 251: 1877–1888; 1976.

    PubMed  CAS  Google Scholar 

  26. Hoffman, S. S.; Kolodny, G. M. Insulin receptors in 3T3 fibroblasts. Exp. Cell Res. 107: 293–299; 1977.

    Article  Google Scholar 

  27. Thomopoulos, P.; Roth, J. Insulin receptors in normal and transformed fibroblasts: Relationship to growth and transformation. Cell 8: 417–423; 1976.

    Article  PubMed  CAS  Google Scholar 

  28. Maturo, J. M. III; Hollenberg, M. D. Insulin receptor: Interaction with non-receptor glycoprotein from liver cell membranes. Proc. Natl. Acad. Sci. USA 75: 3070–3074; 1978.

    Article  PubMed  CAS  Google Scholar 

  29. Cuatrecasas, P. Unmasking of insulin receptors in fat cells and fat cell membranes. J. Biol. Chem. 246: 6532–6542; 1971.

    PubMed  CAS  Google Scholar 

  30. Clarke, S.; DeLuise, M.; Larkins, R. G.; Melick, R. A.; Harrison, L. C. The effects of digestive enzymes on characteristics of placental insulin receptor. Biochem. J. 174: 37–43; 1978.

    Google Scholar 

  31. Schweitzer, J. B.; Smith, R. M.; Jarett, L. Differences in organizational structure of insulin receptor on rat adipocyte and liver plasma membranes: Role of disulfide bonds. Proc. Natl. Acad. Sci. USA 77: 4692–4696; 1980.

    Article  PubMed  CAS  Google Scholar 

  32. Copeau, J.; Picard, J. The influence of glycosidases and lectins on insulin binding to Zajdela hepatoma cells. FEBS Lett. 118: 25–30; 1980.

    Article  Google Scholar 

  33. MeGaw, J. M.; Johnson, L. D. Glycoprotein synthesized by cultured cells: Effects of serum concentrations and buffers on sugar content. Proc. Soc. Exp. Biol. Med. 60–65; 1979.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyse, B.M., Chang, A.Y. Insulin binding in cultured Chinese hamster kidney epithelial cells: The effect of serum in the medium. In Vitro 18, 243–250 (1982). https://doi.org/10.1007/BF02618577

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618577

Key words

Navigation