Skip to main content
Log in

Nutritional and karyotypic characterization of a haploid cell culture ofDaucus carota

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

The purpose of this study was to optimize growth conditions for a strain of haploid carrot callus and to follow its karyotypic changes in a long span of time. The strain has been maintained in liquid suspension since September 1977. It has remained predominantly haploid in its karyotype since that time. The original explant was initiated and subsequently subcultured in Gamborg's B5 medium. The components of the B5 medium were omitted one at a time and sequentially added back to determine their minimum, optimum, and maximum nontoxic concentrations. These changes were made in the original formula: the addition of an organic buffering agent and an increase in the iron and other micronutrient concentrations. Using this slightly modified B5 medium, we assessed the effect on growth by single additions of amino acids, different carbon sources, growth regulators, and vitamins. No improvement in plating efficiency resulted from addition of any of these compounds. We conclude that there are factors limiting the plating efficiency of the haploid cells other than these tested, or that single additions will not make a discernible difference, or that growth promoting factors cannot be exogenously supplemented to cultured cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlson, P. S. Induction and isolation of auxotrophic mutants in somatic cell cultures ofNicotiana tabacum. Science 168: 487–489; 1970.

    Article  PubMed  Google Scholar 

  2. Sung, Z. R. Mutagenesis of cultured plant cells. Genetics 84: 51–57; 1976.

    PubMed  Google Scholar 

  3. Colijn, C. M.; Kool, A. J.; Nijkamp, H. J. J. An effective chemical mutagenesis procedure forPetunia hybrida cell suspension cultures. Theor. Appl. Genet. 55: 101–106; 1979.

    Article  CAS  Google Scholar 

  4. Redei, G. P. Induction of auxotrophic mutants in plants. Informative macromolecules in biological systems. NATO Conference. L. Ledoux, ed. New York: Plenum Press; 1974; 329–350.

    Google Scholar 

  5. Widholm, J. Cultured carrot cell mutants: 5-methyltryptophan resistant trait carried from cell to plant and back. Plant Sci. Lett. 3: 323–330; 1974.

    Article  CAS  Google Scholar 

  6. Dudits, D.; Hadlaczky, G.; Levi, E.; Fejer, I.; Haydn, Z.; Lazar, G. Somatic hybridization ofDaucus carota andDaucus capillifolius by protoplast fusion. Theor. Appl. Gen. 51: 127–132; 1977.

    Google Scholar 

  7. Gamborg, O. L.; Miller, R. A.; Ohyama, K. Nutritional requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158; 1968.

    Article  PubMed  CAS  Google Scholar 

  8. Sung, Z. R. Turbidimetric measurement of plant cell culture growth. Plant Physiol. 57: 460–462; 1976.

    PubMed  Google Scholar 

  9. Bergmann, I. A new technique for isolating and cloning single cells of higher plants. Nature 184: 648–649; 1959.

    Article  Google Scholar 

  10. Kao, K. N. A nuclear staining method for plant protoplasts. Gamborg, O. L.; Wetter, L. R. eds. Plant tissue culture methods. Canada: National Research Council; 1975: 60–62.

    Google Scholar 

  11. Good, N. E.; Weinget, G. D.; Winter, W.; Connolly, T. N.; Izawa, S.; Singh, R. M. M. Hydrogen ion buffers for biological research. Biochemistry 5: 467–477; 1966.

    Article  PubMed  CAS  Google Scholar 

  12. Nesius, K. K.; Fletcher, J. S. Carbon dioxide and pH requirements of non-photosynthetic culture cells. Physiol. Plant 28: 259–263; 1973.

    Article  CAS  Google Scholar 

  13. Martin, R. M.; Rose, B. Growth of plant cell (Igomea) suspension cultures at controlled pH levels. Can. J. Bot. 54: 1264–1270; 1976.

    CAS  Google Scholar 

  14. Blakely, L. M.; Steward, F. C. Growth and organized development of cultured cells. V. The growth of colonies from free cells in nutrient agar. Am. J. Bot. 51: 780–791; 1964.

    Article  Google Scholar 

  15. Sung, Z. R.; Smith, R.; Horowitz, J. Quantitative studies of embryogenesis in normal and 5-methyl-tryptophan-resistant cell lines of wild carrot: the effects of growth regulators. Planta 147: 236–240; 1979.

    Article  CAS  Google Scholar 

  16. Weber, G.; Lark, V. G. An efficient plating system for rapid isolation of mutants from plant cell suspensions. Theor. Appl. Genet. 55: 81–86; 1979.

    Article  Google Scholar 

  17. Lescure, A. M. Etude quantitative de la croissance d'une culture d'Acer pseudoplatanus. Physiol. Veg. 4(4): 365–378; 1966.

    Google Scholar 

  18. Sung, Z. R.; Jacques, S. 5-fluorouracil resistance in carrot culture: its use in studying the interaction of pyrimidine and arginine pathway. Planta 148: 389–396; 1980.

    Article  CAS  Google Scholar 

  19. Jacques, S.; sung, Z. R. Regulation of pyrimidine and arginine biosynthesis investigated by the use of phaseolotoxin and 5-fluorouracil. Plant Physiol. In press.

  20. Sandstedt, R.; Skoog, F. Effects of amino acid components of yeast extract on the growth of tobacco tissue in vitro. Physiol. Plant. 13: 250–256; 1960.

    Article  CAS  Google Scholar 

  21. Bennici, A.; Buiatti, M.; D'Amato, F. Nuclear conditions in haploidPelargonium in vivo andin vitro. chromosoma 24: 194–201; 1968.

    Article  Google Scholar 

  22. Eapen, S.; Rangan, T. S.; Chadha, M. S.; Heble, M. R. Biosynthetic and cytological studies in tissue cultures and regenerated plants of haploidAtropa belladonna. Can. J. Bot. 56: 2781–2784; 1978.

    Google Scholar 

  23. Mathews, P. S.; Vasil, I. K. The dynamics of cell proliferation in haploid and diploid tissues ofNicotiana tabacum. Z. Pflanzenphysiol. 77: 222–236; 1976.

    Google Scholar 

  24. Sacristan, M. D. Karyotypic changes in callus cultures from haploid and diploid plants ofCrepis capillaris (L) Wallr. Chromosoma 33: 273–283; 1971.

    Article  Google Scholar 

  25. Rashid, A.; Street, H. E. Growth, embryogenic potential, and stability of a haploid cell culture ofAtropa belladonna L. Plant Sci. Lett. 2: 89–94; 1974.

    Article  Google Scholar 

  26. Furner, I. J.; King, J.; Gamborg, O. L. Plant regeneration from protoplasts isolated from a predominantly haploid suspension culture ofDatura innoxia (Mill). Plant Sci. Lett. 11: 169–176; 1978.

    Article  Google Scholar 

  27. Hibberd, K. A.; Walter, T.; Green, C. E.; Gegenbach, B. G. Characterization of a selected feedback insensitive tissue culture line of maize. Planta 148: 183–187; 1980.

    Article  CAS  Google Scholar 

  28. Verma, D. C.; Dougall, D. K. Influence of carbohydrates on quantitative aspects of growth and embryo formation in wild carrot suspension cultures. Plant Physiol. 59: 81–85; 1977.

    Article  PubMed  CAS  Google Scholar 

  29. Letham, D. S.; Parker, C. W.; Duke, C. C.; Sumons, R. E.; Maclead, J. K.O-glucosylzeatin and related compounds—a new group of cytokinin metabolites. Ann. Bot. 40: 261–263; 1976.

    Google Scholar 

  30. Kao, K. N.; Michayluk, M. R. Nutritional requirements for growth ofVicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126: 105–110; 1975.

    Article  CAS  Google Scholar 

  31. Eagle, H.; Piez, K. The population dependent requirement by cultured mammalian cells for metabolites which they can synthesize. J. Exptl. Med. 116: 29–43; 1962.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J., Furner, I. & Sung, Z.R. Nutritional and karyotypic characterization of a haploid cell culture ofDaucus carota . In Vitro 17, 315–321 (1981). https://doi.org/10.1007/BF02618143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618143

Key words

Navigation