Skip to main content
Log in

Discrete optimization in public rail transport

  • Published:
Mathematical Programming Submit manuscript

Abstract

Many problems arising in traffic planning can be modelled and solved using discrete optimization. We will focus on recent developments which were applied to large scale real world instances.

Most railroad companies apply a hierarchically structured planning process. Starting with the definition of the underlying network used for transport one has to decide which infrastructural improvements are necessary. Usually, the rail system is periodically scheduled. A fundamental base of the schedule are the lines connecting several stations with a fixed frequency. Possible objectives for the construction of the line plan may be the minimization of the total cost or the maximization of the passengers’s comfort satisfying certain regulations. After the lines of the system are fixed, the train schedule can be determined. A criterion for the quality of a schedule is the total transit time of the passengers including the waiting time which should be minimized satisfying some operational constraints. For each trip of the schedule a train consisting of a locomotive and some carriages is needed for service. The assignment of rolling stock to schedule trips has to satisfy operational requirements. A comprehensible objective is to minimize the total cost. After all strategic and tactical planning the schedule has to be realized. Several external influences, for example delayed trains, force the dispatcher to recompute parts of the schedule on-line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Adamski, Real-time computer aided adaptive control in public transport from the point of schedule reliability, in: J.R. Daduna, I. Branco and J.M.P. Paixão, eds.,Computer-Aided Transit Scheduling: Proceedings of the 6th International Workshop on Computer-aided Scheduling of Public Transport, Lecture Notes in Economics and Mathematical Systems, Vol. 430 (Springer, New York, 1995) 278–295.

    Google Scholar 

  2. R.N. Anthony,Planning and Control Systems: A Framework for Analysis (Harvard, Boston, 1965).

    Google Scholar 

  3. R. Barbour and J.D. Fricker, Estimating an origin-destination table using a method based on shortest augmenting paths,Transportation Research. Part B 28 (1994) 77–89.

    Article  Google Scholar 

  4. R. Battiti and G. Tecchiolli, The reactive tabu search,ORSA J. Comput. 6 (2) (1994) 126–140.

    MATH  Google Scholar 

  5. A.A. Bertossi, P. Carraresi and G. Gallo, On some matching problems arising in vehicle scheduling models,Networks 17 (1987) 271–281.

    MATH  MathSciNet  Google Scholar 

  6. R.E. Bixby, Private communication, 1995.

  7. U. Blasum, M.R. Bussieck, W. Hochstättler, C. Moll, H.-H. Scheel and T. Winter, Scheduling trams in the morning is hard, Technical Report, TU Braunschweig, 1996.

  8. A. Bouma and C. Oltrogge, Linienplanung und Simulation für öffentliche Verkehrswege in Praxis und Theorie,ETR - Eisenbahntechnische Rundschau 43 (6) (1994) 369–378.

    Google Scholar 

  9. P. Brucker, R.E. Burkard and J. Hurink, Cyclic schedules forr irregularly occuring events,Journal of Compututational and Applied Mathematics 30 (1990) 173–189.

    Article  MATH  MathSciNet  Google Scholar 

  10. M.R. Bussieck, P. Kreuzer and U.T. Zimmermann, Optimal lines for railway systems,European Journal of Operation Research 96 (1) (1997) 54–63.

    Article  MATH  Google Scholar 

  11. M.R. Bussieck, Optimal lines in public rail transport, Ph.D. Thesis, TU Braunschweig (1997), to appear.

  12. A. Caprara, M. Fischetti, P. Toth, D. Vigo and P.L. Guida, Algorithms for railway crew management,Mathematical Programming 79 (1997) 125–141.

    Article  MathSciNet  Google Scholar 

  13. M. Carey, A model and strategy for train pathing with choice of lines, platforms, and routes,Transportation Research. Part B 28 (5) (1994) 333–353.

    Article  MathSciNet  Google Scholar 

  14. G. Carpaneto and P. Toth, Some new branching and bounding criteria for the asymmetric travelling salesman problem,Management Science 26 (1980) 736–743.

    MATH  MathSciNet  Google Scholar 

  15. G. Carpaneto, M. Dell’Amico, M. Fischetti and P. Toth, A branch and bound algorithm for the multiple depot vehicle scheduling problem,Networks 19 (1989) 531–548.

    MATH  MathSciNet  Google Scholar 

  16. E. Cascetta and S. Nguyen, A unified framework for estimating or updating origin/destination matrices from traffic counts,Transportation Research, Part B 21 (1987) 437–455.

    MathSciNet  Google Scholar 

  17. A. Ceder, A procedure to adjust transit trip departure times through minimizing the maximum headway,Computers and Operations Research 18 (5) (1991) 417–431.

    Article  MATH  Google Scholar 

  18. A. Ceder and Y. Israeli, Scheduling considerations in designing transit routes at the network level, in: M. Desrochers and J.M. Rousseau, eds.,Computer-Aided Transit Scheduling: Proceedings of the 5th International Workshop on Computer-aided Scheduling of Public Transport, Lecture Notes in Economics and Mathematical Systems, Vol. 386 (Springer, New York, 1992) 113–136.

    Google Scholar 

  19. P. Cenek, Simulation of processes in a marshalling yard, in:Computers in Railways V, Vol. I, Chapter “Marshalling and Distribution” (Computational Mechanics Publications, 1996) 501–510.

  20. M.T. Claessens, N.M. van Dijk and P.J. Zwaneveld, Cost optimal allocation of passenger lines, Technical Report 231, Erasmus Universiteit, Rotterdam, 1995.

    Google Scholar 

  21. CPLEX Optimization, Inc., Using the CPLEX callable library, Manual, 1995.

  22. J.R. Daduna and A. Wren, eds.,Computer-aided transit scheduling: Proceedings of the 4th International Workshop on Computer-aided Scheduling of Public Transport, Lecture Notes in Economics and Mathematical Systems, Vol. 308 (Springer, New York, 1988).

    Google Scholar 

  23. J.R. Daduna, I. Branco and J.M.P. Paixão, eds.,Computer-Aided Transit Scheduling: Proceedings of the 6th International Workshop on Computer-aided Scheduling of Public Transport, Lecture Notes in Economics and Mathematical Systems, Vol. 430 (Springer, New York, 1995).

    MATH  Google Scholar 

  24. J.R. Daduna and S. Voß, Practical experiences in schedule synchronization, in: J.R. Daduna, I. Branco and J.M.P. Paixão, eds.,Computer-Aided Transit Scheduling: Proceedings of the 6th International Workshop on Computer-aided Scheduling of Public Transport, Lecture Notes in Economics and Mathematical Systems, Vol. 430 (Springer, New York, 1995) 39–55.

    Google Scholar 

  25. M. Desrochers and J.M. Rousseau, eds.,Computer-Aided Transit Scheduling: Proceedings of the 5th International Workshop on Computer-aided Scheduling of Public Transport, Lecture Notes in Economics and Mathematical Systems, Vol. 386 (Springer, New York, 1992).

    Google Scholar 

  26. J. Desrosiers, Y. Dumas, M.M. Solomon and F. Soumis, Time constrained routing and scheduling, in:Handbooks in Operations Research and Management Science, Vol. 8 (Elsevier, Amsterdam, 1995) Chapter 2, 35–139.

    Google Scholar 

  27. H. Dienst, Linienplanung im spurgeführten Personenfernverkehr mit Hilfe eines heuristischen Verfahrens, Ph.D. Thesis, TU Braunschweig, 1978.

  28. W. Domschke, Schedule synchronization for public transit networks,OR Spektrum 11 (1989) 17–24.

    Article  MATH  Google Scholar 

  29. W. Domschke, P. Forst and S. Voß, Tabu search techniques for the quadratic semi-assignment problem, in: G. Fandel, T. Gulledge and A. Jones, eds.,New Directions for Operations Research in Manufacturing (Springer, Berlin, 1992) 389–405.

    Google Scholar 

  30. M.A. Forbes, J.N. Holt and A.M. Watts, An exact algorithm for multiple depot bus scheduling,European Journal of Operations Research 72 (1994) 115–124.

    Article  MATH  Google Scholar 

  31. M. Grötschel, A. Löbel and M. Völker, Optimierung des Fahrzeugumlaufs im öffentlichen Nahverkehr, in: K.-H. Hoffmann, W. Jäger, Th. Lohmann and H. Schnuck, eds.,Mathematik — Schlüsseltechnologie für die Zukunft (Springer, Berlin, 1997) 609–624.

    Google Scholar 

  32. K. Hoffman and M. Padberg, LP-based combinatorial problem solving,Annals of Operations Research 4 (1985) 145–194.

    Article  MathSciNet  Google Scholar 

  33. J.S. Hooghiemstra, Design of regular interval timetables for strategic and tactical railway planning, in: J. Allan, C.A. Brebbia, R.J. Hill, G. Sciutto and S. Sone, eds.,Computers in Railways V, Vol. 1 (Computational Mechanics Publications, 1996) 393–402.

  34. K. Jörnsten and S.W. Wallace, Overcoming the (apparent) problem of inconsistency in origin-destination matrix estimations,Transportation Science 27 (4) (1993) 374–380.

    MATH  Google Scholar 

  35. W.-D. Klemt and W. Stemme, Schedule synchronization for public transit networks, in: J.R. Daduna and A. Wren, eds.,Computer-aided transit scheduling: Proceedings of the 4th International Workshop on Computer-aided Scheduling of Public Transport, Lecture Notes in Economics and Mathematical Systems, Vol. 308 (Springer, New York, 1988) 327–335.

    Google Scholar 

  36. V. Klima and A. Kavicka, RBSIM — simulation model of marshalling yard operation,Computers in Railways V, Vol. 1, Chapter “Marshalling and Distribution” (Computational Mechanics Publications, 1996) 493–500.

  37. A. Kokott and A. Löbel, Lagrangean relaxations and subgradient methods for multiple-depot vehicle scheduling problems, Technical Report SC 96-22, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), 1996.

  38. M. Krista, Verfahren zur Fahrplanoptimierung dargestellt am Beispiel der Synchronzeiten, Dissertation, TU Braunschweig, 1996.

  39. L.G. Kroon and P.J. Zwaneveld, Routing trains through railway stations including shunting decisions, in: P. Kleinschmidt, A. Bachem, U. Derigs, D. Fischer, U. Leopold-Wildburger and R. Möhring, eds.,Operations Research Proceedings 1995 (Springer, Berlin, 1995) 438–444.

    Google Scholar 

  40. L.G. Kroon, H.E. Romeijn and P.J. Zwaneveld, Routing trains through railway stations: Complexity issues,European Journal on Operations Research 98 (3) (1997) 485–598.

    Article  MATH  Google Scholar 

  41. C. Lardinois, T. Crainic and J. Dion, An interactive graphic approach for the integrated design of intercity transportation timetables and vehicle operations,Computers and Operations Research 19 (2) (1992) 139–149.

    Article  MATH  Google Scholar 

  42. Y. Li, J.-M. Rousseau and M. Gendreau, Real-time dispatching of public transit operations with and without bus location information, in: J.R. Daduna, I. Branco and J.M.P. Paixão, eds.,Computer-Aided Transit Scheduling: Proceedings of the 6th International Workshop on Computer-aided Scheduling of Public Transport, Lecture Notes in Economics and Mathematical Systems, Vol. 430 (Springer, New York, 1995) 296–308.

    Google Scholar 

  43. A. Löbel, Solving large-scale real-world minimum-cost flow problems by a network simplex method, Technical Report SC 96-7, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), 1996.

  44. A. Löbel, Solving the LP relaxations of large-scale multiple-depot vehicle scheduling problems exactly, Technical Report SC 96-26, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), 1996.

  45. A. Löbel, Optimal vehicle scheduling in public transit, Ph.D. Thesis, Technical University Berlin (1997), to appear.

  46. W.D. Middleton, New York megalopolis plans regional rail expansion,Railway Gazette International, 1997.

  47. K. Nachtigall, Exact solution methods for periodic programs, Technical Report 14, Universität Hildesheim, 1993.

  48. K. Nachtigall, Cutting planes for a polyhedron associated with a periodic network, Technical Report IB 112-96/17, Institut für Flugführung Braunschweig, 1996.

  49. K. Nachtigall, Periodic network optimization with different arc frequencies,Discrete Applied Mathematics 69 (1996) 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  50. K. Nachtigall and S. Voget, Minimizing waiting times in integrated fixed interval timetables by upgrading railway tracks, Technical Report, Universität Hildesheim, 1996; also in:European Journal on Operations Research, to appear.

  51. B. Neng, Zur Erstellung von optimalen Triebfahrzeugumläufen,Zeitschrift für Operations Research Ser. A–B 25 (1981) 159–185.

    Article  Google Scholar 

  52. M.A. Odijk, A constraint generation algorithm for the construction of periodic railway timetables,Transportation Research. Part B 30 (6) (1996) 455–464.

    Article  Google Scholar 

  53. C. Oltrogge, Linienplanung für mehrstufige Bedienungssyteme im öffentlichen Personenverkehr, Ph.D. Thesis, TU Braunschweig, 1994.

  54. U. Pape, Y.-S. Reinecke and E. Reinecke, Line network planning, in: J.R. Daduna, I. Branco and J.M.P. Paixão, eds.,Computer-Aided Transit Scheduling: Proceedings of the 6th International Workshop on Computer-aided Scheduling of Public Transport, Lecture Notes in Economics and Mathematical Systems, Vol. 430 (Springer, New York, 1995) 1–7.

    Google Scholar 

  55. A. Patz, Die richtige Auswahl von Verkehrslinien bei großen Straßenbahnnetzen,Verkehrstechnik 50/51 (1925).

    Google Scholar 

  56. K. Pierick and K.-D. Wiegand, Methodische Ansätze für eine Optimierung des schienengebundenen Personenfernverkehrs,Schienen der Welt 46 (1976) 197–203.

    Google Scholar 

  57. A. Radtke, Dispositionsmodell für den optimierten Betriebsmitteleinsatz der Eisenbahn, Ph.D. Thesis, Universität Hannover, 1995.

  58. C.C. Ribeiro and F. Soumis, A column generation approach to the multiple-depot vehicle scheduling problem,Operations Research 42 (1) (1994) 41–52.

    MATH  Google Scholar 

  59. R.T. Rockafellar,Network Flows and Monotropic Optimization (John Wiley and Sons, New York, 1984).

    MATH  Google Scholar 

  60. B. Sansó, M. Desrochers, J. Desrosiers, Y. Dumas and F. Soumis, Modeling and solving routing and scheduling problems: GENCOL’s user guide, Technical Report, GERAD Montreal, 1990.

  61. A. Schrijver,Theory of Linear and Integer Programming (John Wiley and Sons, Chichester, 1986).

    MATH  Google Scholar 

  62. A. Schrijver, Minimum circulation of railway stock,CWI Quarterly 6 (3) (1993) 205–217.

    MATH  Google Scholar 

  63. P. Serafini and W. Ukovich, A mathematical model for periodic scheduling problems,SIAM Journal on Discrete Mathematics 2 (4) (1989) 550–581.

    Article  MATH  MathSciNet  Google Scholar 

  64. H.D. Sherali, R. Sivanandan and A.G. Hobeika, A linear programming approach for synthesizing origin-destination trip tables from link traffic volumes,Transportation Research. Part B 28 (3) (1994) 213–233.

    Article  Google Scholar 

  65. S. Voß, Network design formulations in schedule synchronization, in: M. Desrochers and J.-M. Rousseau, eds.,Computer-aided Transit Scheduling, Lecture Notes in Economic and Mathematical Systems, Vol. 386 (Springer, Berlin, 1992) 137–152.

    Google Scholar 

  66. M. van Witsen, The Netherlands and new international rail infrastructure,Tijdschrift voor Economische en Sociale Geografie 87 (2) (1996) 181–187.

    Article  Google Scholar 

  67. U. Zimmermann, Linear and combinatorial optimization in ordered algebraic structures,Annals of Discrete Mathematics, Vol. 10 (North-Holland, Amsterdam, 1981).

    Google Scholar 

  68. U.T. Zimmermann, M.R. Bussieck, M. Krista and K.-D. Wiegand, Linienoptimierung — Modellierung und praktischer Einsatz, in: K.-H. Hoffmann, W. Jäger, Th. Lohmann and H. Schunck, eds.,Mathematik — Schlüsseltechnologie für die Zukunft (Springer, Berlin, 1997) 595–607.

    Google Scholar 

  69. P.J. Zwaneveld, M.T. Claessens and N.M. van Dijk, A new method to determine the cost optimal allocation of passenger lines, in:Defence or Attack: Proceedings 2nd TRAIL PhD Congress 1996, Part 2, Delft/Rotterdam (TRAIL Research School, 1996).

  70. P.J. Zwaneveld, S. Dauzère-Pérès, S.P.M. van Hoesel, L.G. Kroon, H.E. Romeijn, M. Salomon and H.W. Ambergen, Routing trains through railway stations: Model formulation and algorithms,Transportation Science 30 (3) (1996) 181–194.

    Article  MATH  Google Scholar 

  71. P.J. Zwaneveld, Private communication, 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. T. Zimmermann.

Additional information

A Web page with examples quoted in this survey can be found at http://www.math.tu-bs.de/mo/ismp.html.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bussieck, M.R., Winter, T. & Zimmermann, U.T. Discrete optimization in public rail transport. Mathematical Programming 79, 415–444 (1997). https://doi.org/10.1007/BF02614327

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02614327

Keywords

Navigation