Skip to main content
Log in

Lp-based combinatorial problem solving

  • Combinatorial Optimization
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A tutorial outline of the polyhedral theory that underlies linear programming (LP)-based combinatorial problem solving is given. Design aspects of a combinatorial problem solver are discussed in general terms. Three computational studies in combinatorial problem solving using the polyhedral theory developed in the past fifteen years are surveyed: one addresses the symmetric traveling salesman problem, another the optimal triangulation of input/output matrices, and the third the optimization of large-scale zero-one linear programming problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Balas and R. Martin, Pivot and complement — a heuristic for 0–1 programming, Management Science 26(1980)86.

    Google Scholar 

  2. I. Baranyi, T. Van Roy and L. Wolsey, Strong formulations for multi-item capacitated lot sizing, CORE Report No. 8313, Université Catholique, Louvain-la-Neuve, Belgium (1983a).

    Google Scholar 

  3. I. Baranyi, T. Van Roy and L. Wolsey, Uncapacitated, lot sizing: The convex hull of solutions, CORE Report No. 8314, Université Catholique, Louvain-la-Neuve, Belgium (1983b).

    Google Scholar 

  4. J. Bernal, K.L. Hoffman and M. Padberg, Pure zero-one linear programming problems: A computational study, Tech. Rep., National Bureau of Standards, Gaithersburg, MD (1985).

    Google Scholar 

  5. N. Biggs, E. Lloyd and R. Wilson,Graph Theory 1736–1936 (Clarendon Press, Oxford, 1976).

    Google Scholar 

  6. R. Burkard and U. Derigs,Assignment and Matching Problems: Solution Methods with FORTRAN-Programs, Springer Lecture Notes in Economics and Mathematical Systems, No. 184 (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  7. D. Chinhyung Cho, E.L. Johnson, M. Padberg and M.R. Rao, On the uncapacitated plant location problem I: Valid inequalities and facets, Mathematics of Operations Research 8(1983)579.

    Google Scholar 

  8. D. Chinhyung Cho, M. Padberg and M.R. Rao, On the uncapacitated plant location problem II: Facets and lifting theorems, Mathematics of Operations Research 8(1983)590.

    Google Scholar 

  9. V. Chvátal, Edmonds polytopes and weakly Hamiltonian graphs, Math. Progr. 5(1973)29.

    Google Scholar 

  10. H. Crowder and M. Padberg, Solving large-scale symmetric traveling salesman problems to optimality, Management Science 26(1980)495.

    Google Scholar 

  11. H. Crowder, E. Johnson and M. Padberg, Solving large-scale linear zero-one programming problems, Oper. Res. 31(1983)803.

    Google Scholar 

  12. G. Dantzig, D.R. Fulkerson and S. Johnson, Solution of a large-scale traveling salesman problem, Oper. Res. 2(1954)293.

    Google Scholar 

  13. G. Dantzig,Linear Programming and Extensions (Princeton University Press, New Jersey, 1963).

    Google Scholar 

  14. J. Edmonds, Maximum matching and a polyhedron with 0, 1 vertices, Journal of Research, National Bureau of Standards 69B(1965)125.

    Google Scholar 

  15. L. Euler,Commentationes Arithmeticae Collectae (St. Petersburg, 1736).

  16. B. Fleischmann, The traveling salesman problem on a road network, Working Paper, Fachbereich Wirtschaftswissenschaften, Universität Hamburg (1981), revised July 1982.

  17. B. Fleischmann, Linear programming approaches to traveling salesman and vehicle scheduling problems, paper presented at the XI Int. Symposium on Mathematical Programming, Bonn, FRG (1982).

  18. R. Gomory and T.C. Hu, Multi-terminal network flows, J. SIAM 9(1961)551.

    Google Scholar 

  19. M. Grötschel, On the symmetric TSP: Solution of a 120-city problem, Math. Progr. Studies 12(1980)61.

    Google Scholar 

  20. M. Grötschel and O. Holland, Solving matching problems with linear programming, Preprint No. 37, Mathematisches Institut, Universität Augsburg, FRG (1984).

    Google Scholar 

  21. M. Grötschel, L. Lovasz and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorics 1(1981)169.

    Google Scholar 

  22. M. Grötschel and M. Padberg, Polyhedral aspects of the traveling salesman problem I: Theory, in:The Travelling Salesman Problem, ed. E. Lawler et al. (Wiley, Chichester, 1985).

    Google Scholar 

  23. M. Grötschel, M. Jünger and G. Reinelt, On the acyclic subgraph polytope, WP 82215-OR, Institut für Operations Research, Universität Bonn, FRG (1982a).

    Google Scholar 

  24. M. Grötschel, M. Jünger and G. Reinelt, Facets of the linear ordering polytope, WP 82217-OR, Institu für Operations Research, Universität Bonn, FRG (1982b).

    Google Scholar 

  25. M. Grötschel, M. Jünger and G. Reinelt, Optimal triangulation of large real-world input/output matrices, Preprint No. 9, Mathematisches Institut, Universität Augsburg, FRG (1983).

    Google Scholar 

  26. T. Hankins,Sir William Rowan Hamilton (John Hopkins University Press, Baltimore, 1980).

    Google Scholar 

  27. Held and Karp, The traveling salesman and minimum spanning trees, Part I: Oper. Res. 18(1970)1138; Part II: Math. Progr, 1(1971)6.

    Google Scholar 

  28. S. Hong, A linear programming approach for the traveling salesman problem, Ph.D. Thesis, John Hopkins University, Baltimore (1972).

    Google Scholar 

  29. IBM, Pure Integer Programming executor program description and operations manual. Program No. 5785-GBX, IBM SB11-5712-0. First edition, Aug. 1982.

  30. E. Johnson and M. Padberg, A note on the knapsack problem with special ordered sets, Oper. Res. Lett. 1(1981)38.

    Google Scholar 

  31. E. Johnson and M. Padberg, Degree-two inequalities, clique facets and biperfect graphs, Ann. of Disc. Math. 16(1982)169.

    Google Scholar 

  32. Karp and Papadimitriou, On linear characterizations of combinatorial optimization problems, 21st Annual Symposium on the Foundation of Computer Science, 1980, p. 1.

  33. D. Knuth, The traveling salesman problem, illustrative example in:Frontiers of Science, from Microcosm to Macrososm, by H. Sullivan, New York Times (February 24, 1976) p. 18.

  34. P. Krolak, W. Felts and G. Marble, A man-machine approach toward solving the traveling salesman problem, CACM 14(1971)327.

    Google Scholar 

  35. A. Land, The solution of 100-city symmetric traveling salesman problems, Research Report, London School of Economics, London (1979).

    Google Scholar 

  36. E. Lawler,The Traveling Salesman Problem, ed. E. Lawler, J.K. Lenstra, A. Rinooy Kan and D. Shmoys (Wiley, Chichester, 1985).

    Google Scholar 

  37. W. Leontief, Quantitative input and output relations in the economic system of the United States, Review of Economic Systems 18(1936)105.

    Google Scholar 

  38. W. Leontief,The Structure of the American Economy 1919–1939 (Oxford University Press, New York, 1951).

    Google Scholar 

  39. W. Leontief, The structure of development, Scientific American (1963).

  40. W. Leontief,Input-Output Economics (Oxford University Press, New York, 1966).

    Google Scholar 

  41. S. Lin and B. Kerningham, An effective heuristic algorithm for the traveling salesman, Oper. Res. 21(1973)498.

    Google Scholar 

  42. J. Lorie and L.J. Savage, Three problems in capital rationing, Journal of Business 28(1955)229.

    Google Scholar 

  43. R.E. Marsten, XMP: A structured library of subroutines for experimental mathematical programming, ACM Trans. on Mathematical Software 7(1981)481.

    Google Scholar 

  44. R.E. Marsten, User's guide to IP83, Tech. Report, Department of Management Information Systems, University of Arizona (1983).

  45. R.E. Marsten and T.L. Morin, A hybrid approach to discrete mathematical programming, Math. Progr. 14(1978)21.

    Google Scholar 

  46. R.K. Martin and L. Schrage, Subset coefficient reduction cuts for 0–1 mixed integer programming, Tech. Report, Graduate School of Business, University of Chocago, Illinois (1983).

    Google Scholar 

  47. K. Menger, Botenproblem, in:Ergebnisse eines Mathematischen Kolloquiums Wien, 1930, Heft 2, ed. K. Menger (Leipzig, 1932) p. 11.

  48. T. Miliotis, Integer programming approaches to the traveling salesman problem, Math. Progr. 10(1976)367.

    Google Scholar 

  49. T. Miliotis, Using cutting planes to solve the symmetric traveling salesman problem, Math. Progr. 15(1979)177.

    Google Scholar 

  50. M. Padberg, On the facial structure of set packing polyhedra, Math. Progr. 5(1973)199.

    Google Scholar 

  51. M. Padberg, Characterizations of totally unimodular, balanced and perfect matrices, in:Combinatorial Programming: Methods and Applications, ed. B. Roy (Reidel, Dordrecht, 1975) p. 275.

    Google Scholar 

  52. M. Padberg, A note on zero-one programming, Oper. Res. 23(1975)833.

    Google Scholar 

  53. M. Padberg, On the complexity of set packing polyhedra, Ann. Discr. Math. 1(1977)421.

    Google Scholar 

  54. M. Padberg, Covering, packing and knapsack problems, Ann. Discr. Math. 4(1979)265.

    Google Scholar 

  55. M. Padberg and S. Hong, On the symmetric traveling salesman problem: A computational study, Math. Progr. Studies 12(1980)78.

    Google Scholar 

  56. M. Padberg, (1,k)-configurations and facets for packing problems, Math. Progr. 18(1980)94.

    Google Scholar 

  57. M. Padberg and M.R. Rao, The Russian Method for linear inequalities III: Bounded integer programming, INRIA, Rapport de recherche, Rocquencourt, revised May 1981, to appear in Math. Progr. Studies.

  58. M. Padberg and M.R. Rao, Odd minimum cut-sets andb-matchings, Math. Oper. Res. 7(1982)67.

    Google Scholar 

  59. M. Padberg, T. Van Roy and L. Wolsey, Valid linear inequalities for fixed charge problems, CORE Report No. 8232, Université Catholique, Louvain-la-Neuve, Belgium (1982), to appear in Oper. Res. (1985).

    Google Scholar 

  60. M. Padberg and M. Grötschel, Polyhedral aspects of the traveling salesman problem II: Computation, in:The Traveling Salesman Problem, ed. E. Lawler et al. Wiley, Chichester, 1985).

    Google Scholar 

  61. J. Singhal, Fixed order branch and bound methods for mixed integer programming, Dissertation, Department of Management Information Systems, University of Arizona (1982).

  62. G.L. Thompson and R.L. Karp, A heuristic approach to solving traveling salesman problems, Management Science 10(1964)225.

    Google Scholar 

  63. L. Trotter, A class of facets for vertex-packing polyhedra, Discr. Math. 12(1975)373.

    Google Scholar 

  64. T. Van Roy and L. Wolsey, Valid inequalities for mixed 0–1 programs, CORE Report No. 8316, Université Catholique, Louvain-la-Neuve, Belgium (1983).

    Google Scholar 

  65. T. Van Roy and L. Wolsey, Valid inequalities and separation for uncapacitated fixed charge networks, CORE Report No. 8410, Université Catholique, Louvain-la-Neuve, Belgium (1984a).

    Google Scholar 

  66. T. Van Roy and L. Wolsey, Solving mixed integer programs by automatic reformulation, CORE Report No. 8432, Université Catholique, Louvain-la-Neuve, Belgium (1984b).

    Google Scholar 

  67. H.M. Weingartner,Mathematical Programming and the Analysis of Capital Budgeting (Prentice-Hall, Englewood Cliffs, NJ, 1963).

    Google Scholar 

  68. H. Weyl, Elementare Theorie der konvexen Polyheder, Comm. Math. Helv. 7(1935)290, translated in:Contributions to the Theory of Games, Vol. 1 (Annals of Mathematics Studies, No. 24, Princeton, 1950) p. 3.

    Google Scholar 

  69. L. Wolsey, Faces for a linear inequality in 0–1 variables, Math. Progr. 8(1975)165.

    Google Scholar 

  70. H.P. Young, On permutations and permutation polytopes, Math. Progr. Studies 8(1978)128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, K., Padberg, M. Lp-based combinatorial problem solving. Ann Oper Res 4, 145–194 (1985). https://doi.org/10.1007/BF02022040

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02022040

Keywords and phrases

Navigation