Skip to main content
Log in

A note on computing bonus-malus insurance premiums using a hierarchical bayesian framework

  • Published:
Test Aims and scope Submit manuscript

Abstract

In this paper we consider statistical problems arising from applications concerning insurance-premium calculation. We describe an integrated set of Bayesian tools for modelling bonus-malus systems (BMS) for insurance premiums. This paper describes a bonus-malus system (BMS) applicable to insurance claims procedures, constructed using a hierarchical Bayesian model. We then address notions and techniques of robust Bayesian analysis in the context of problems arising in BMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger, J. O. (1985),Statistical Decision Theory and Bayesian Analysis, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Berger, J. O. (1994). An overview of robust Bayesian analysis (with discussion).Test, 3(1):5–124.

    Article  MATH  MathSciNet  Google Scholar 

  • Berger, J. O., Ríos, D., andRucgeri, F. (2000). Bayesian robustness. In D. Ríos and F. Ruggeri, eds.,Robust Bayesian Analysis, pp. 1–32. Springer-Verlag, New York.

    Google Scholar 

  • Betrò, B., Ruggeri, F., andMęczarski, M. (1994). Robust Bayesian analysis under generalized moments conditions.Journal of Statistical Planning and Inference, 41:257–266.

    Article  MATH  MathSciNet  Google Scholar 

  • Bühlmann, H. (1970).Mathematical Methods in Risk Theory, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Eichenauer, J., Lehn, J., andRettig, S. (1988). A gamma-minimax result in credibility theory.Insurance: Mathematics & Economics, 7:49–57.

    Article  MATH  MathSciNet  Google Scholar 

  • Frangos, N. andVrontos, S. (2001). Design of optimal bonus-malus systems with a fequency and severity component on an individual basis in automobile insurance.ASTIN Bulletin, 31:1–22.

    Article  MathSciNet  Google Scholar 

  • Gómez, E., Hernández, A., andVázquez-Polo, F. J. (2000). Robust Bayesian premium principles in actuarial science.Journal of the Royal Statistical Society. Series D (The Statistician), 49:241–252.

    Article  Google Scholar 

  • Gómez, E., Pérez, J. M., Hernández, A, andVázquez-Polo, F. J. (2002). Measuring sensitivity in a bonus-malus system.Insurance: Mathematics & Economics, 31:105–113.

    Article  MATH  MathSciNet  Google Scholar 

  • Goovaerts, M. andHoogstad, W. (1987). Credibility theory.Surveys of Actuarial Studies, 4:19–52.

    Google Scholar 

  • Heilmann, W. (1989). Decision theoretic foundations of credibility theory.Insurance: Mathematics & Economics, 8:77–95.

    Article  MATH  MathSciNet  Google Scholar 

  • Klugman, S. (1992).Bayesian Statistics in Acturial Science. Kluwer Academic Publisher, Boston.

    Google Scholar 

  • Lemaire, J. (1995).Bonus-Malus Systems in Automobile Insurance. Kluwer Academic Publisher, London.

    Google Scholar 

  • Magalhães, F. andDunsmore, I. R (2003). Predicting the number of accidents at a road junction.Test, 12(1):153–172.

    Article  MATH  MathSciNet  Google Scholar 

  • Makov, U. (1995). Loss robustness via Fisher-weighted squared error loss function.Insurance: Mathematics & Economics, 16:1–6.

    Article  MATH  MathSciNet  Google Scholar 

  • Martín, J., Ríos, D., andRuggeri, F. (2003). Joint sensitivity in Bayesian decision theory.Test, 12(1):173–194.

    Article  MATH  MathSciNet  Google Scholar 

  • Miller, R. B. (1980). Actuarial applications of Bayesian statistics. In A. Zellner, ed.,Bayesian Analysis in Econometrics and Statistics, pp. 197–212. North-Holland, New York.

    Google Scholar 

  • Ntzoufras, I. andDellaportas, P. (2002). Bayesian modelling of out-standing liabilities incorporating claim count uncertainty.North American Actuarial Journal, 6:113–128.

    MATH  MathSciNet  Google Scholar 

  • Ríos, S., Martín, J., Ríos, D. andRuggeri, F. (1999). Bayesian forecasting for accident proneness evaluation.Scandinavian Actuarial Journal, 2:134–156.

    Article  Google Scholar 

  • Tremblay, L. (1992). Using the Poisson inverse Gaussian in bonus-malus systems.ASTIN Bulletin, 22:97–106.

    Article  Google Scholar 

  • Winkler, G. (1988). Extreme points of moment sets.Mathematical Operations Research, 13:581–587.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Vázquez-Polo.

Additional information

Research partially supported by grants from MCyT (Ministerio de Ciencia y Tecnología, Spain, project BEC2001-3774) and DGUI (Dirección General de Universidades e Investigación del Gobierno Autónomo de Canarias, Spain, project PI2003-033).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Déniz, E., Vázquez-Polo, F.J. & Pérez, J.M. A note on computing bonus-malus insurance premiums using a hierarchical bayesian framework. Test 15, 345–359 (2006). https://doi.org/10.1007/BF02607056

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02607056

Key Words

AMS subject classification

Navigation