Skip to main content
Log in

The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking

  • Original Research Paper
  • Published:
European Actuarial Journal Aims and scope Submit manuscript

A Discussion on recent papers to this article was published on 01 June 2019

Abstract

This paper presents the Negative Binomial-Inverse Gaussian regression model for approximating the number of claims as an alternative to mixed Poisson regression models that have been widely used in various disciplines including actuarial applications. The Negative Binomial-Inverse Gaussian regression model can be considered as a plausible model for highly dispersed claim count data and this is the first time that it is used in a statistical or actuarial context. The main achievement is that we propose a quite simple Expectation-Maximization type algorithm for maximum likelihood estimation of the model. Finally, a real data application using motor insurance data is examined and both the a priori and a posteriori, or Bonus-Malus, premium rates resulting from the Negative Binomial-Inverse Gaussian model are calculated via the net premium principle and compared to those determined by the Negative Binomial Type I and the Poisson-Inverse Gaussian regression models that have been traditionally used for a priori and a posteriori ratemaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note that the NBIG distribution given in Eq. (5) is different from the one used in Gómez-Deniz et al. [24], who considered the case without covariate information.

  2. Note that pseudo-values will be used in lieu of the original values to estimate the parameters of interest.

  3. Note that the location and scale parameters of the NBI and PIG models are denoted by \(\mu\) and \(\sigma\) respectively

  4. Note that all the explanatory variables and the parameters of the models are statistically significant at a 5% threshold.

  5. We also used three fourths of the data set to estimate the parameters of the models and the remaining one fourth was used to test the out-of-sample prediction accuracy of the models. As expected, our findings were consistent with those provided by the AIC criterion. For more details, refer to Stone [46] who showed that AIC and leave-one out cross validation are asymptotically equivalent.

References

  1. Bermúdez L, Karlis D (2011) Bayesian multivariate Poisson models for insurance ratemaking. Insur Math Econ 48(2):226–236

    Article  MathSciNet  MATH  Google Scholar 

  2. Bermúdez L, Karlis D (2017) A posteriori ratemaking using bivariate Poisson models. Scand Actuar J 2017(2):148–158

    Article  MathSciNet  MATH  Google Scholar 

  3. Bozdogan H (1987) Model selection and Akaike’s Information Criterion (AIC). The general theory and its analytical extensions. Psychometrika 52(3):345–370

    Article  MathSciNet  MATH  Google Scholar 

  4. Bohning D (1999) Computer assisted analysis of mixtures and applications in meta-analysis, disease mapping and others. CRC Press, New York

    MATH  Google Scholar 

  5. Booth JG, Hobert JP (1999) Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. J R Stat Soc Ser B (Stat Methodol) 61(1):265–285

    Article  MATH  Google Scholar 

  6. Booth JG, Hobert JP, Jank W (2001) A survey of Monte Carlo algorithms for maximizing the likelihood of a two-stage hierarchical model. Stat Model 1(4):333–349

    Article  MATH  Google Scholar 

  7. Boucher JP, Denuit M, Guillen M (2007) Risk classification for claim counts: a comparative analysis of various Zero-Inflated mixed Poisson and Hurdle models. N Am Actuar J 11(4):110–131

    Article  MathSciNet  Google Scholar 

  8. Boucher JP, Denuit M, Guillen M (2008) Models of insurance claim counts with time dependence based on generalisation of Poisson and negative binomial distributions. Variance 2(1):135–162

    Google Scholar 

  9. Brouhns N, Guillen M, Denuit M, Pinquet J (2003) Bonus-malus scales in segmented tariffs with stochastic migration between segments. J Risk Insur 70:577–599

    Article  Google Scholar 

  10. Cohen AC (1966) A note on certain discrete mixed distributions. Biometrics 22(3):566–572

    Article  MathSciNet  Google Scholar 

  11. Dean C, Lawless JF, Willmot GE (1989) A mixed Poisson-inverse-Gaussian regression model. Can J Stat 17(2):171–181

    Article  MathSciNet  MATH  Google Scholar 

  12. De Jong P, Heller GZ (2008) Generalized linear models for insurance data, vol 10. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  13. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodol) 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  14. Denuit M, Lang S (2004) Nonlife ratemaking with Bayesian GAM’s. Insur Math Econ 35:627–47

    Article  Google Scholar 

  15. Denuit M, Marechal X, Pitrebois S, Walhin JF (2007) Actuarial modelling of claim counts: risk classification, credibility and bonus-malus systems. Wiley, Hoboken

    Book  MATH  Google Scholar 

  16. Dionne G, Vanasse C (1989) A generalization of actuarial automobile insurance rating models: the negative binomial distribution with a regression component. ASTIN Bull 19:199–212

    Article  Google Scholar 

  17. Dionne G, Vanasse C (1992) Automobile insurance ratemaking in the presence of asymmetrical information. J Appl Econ 7:149–165

    Article  Google Scholar 

  18. Dunn PK, Smyth GK (1996) Randomized quantile residuals. Comput Graph Stat 5:236–245

    Google Scholar 

  19. Frangos N, Vrontos S (2001) Design of optimal bonus-malus systems with a frequency and a severity component on an individual basis in automobile insurance. ASTIN Bull 31(1):1–22

    Article  MathSciNet  MATH  Google Scholar 

  20. Frees EW (2010) Regression modeling with actuarial and financial applications. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  21. Geedipally SR, Lord D, Dhavala SS (2012) The negative binomial-Lindley generalized linear model: characteristics and application using crash data. Accid Anal Prev 45:258–265

    Article  Google Scholar 

  22. Gençtürk Y, Yiğiter A (2016) Modelling claim number using a new mixture model: negative binomial gamma distribution. J Stat Comput Simul 86(10):1829–1839

    Article  MathSciNet  Google Scholar 

  23. Gómez-Déniz E, Vázquez F (2003) Robustness in Bayesian model for Bonus-Malus systems. In: Intelligent and Other Computation Techniques in Insurance. Theory and Applications. World Scientific

  24. Gómez-Déniz E, Sarabia JM, Calderín-Ojeda E (2008) Univariate and multivariate versions of the negative binomial-inverse Gaussian distributions with applications. Insur Math Econ 42(1):39–49

    Article  MathSciNet  MATH  Google Scholar 

  25. Gómez-Déniz E, Hernández-Bastida A, Fernández-Sánchez MP (2014) Computing credibility bonus-malus premiums using the aggregate claims distribution. Hacettepe J Math Stat 43(6):1047–1061

    MathSciNet  MATH  Google Scholar 

  26. Gómez-Déniz E, Calderín-Ojeda E (2016) The mixture Poisson exponential-inverse Gaussian regression model: an application in health services. Metodoloski Zvezki 13(2):71

    Google Scholar 

  27. Gómez-Déniz E, Calderín-Ojeda E (2017) An alternative representation of the negative binomial-Lindley distribution. New results and applications. arXiv preprint arXiv:1703.04812

  28. Haberman S, Renshaw AE (1996) Generalized linear models and actuarial science. The Statistician, 407-436

  29. Insurance Europe (2016) European Insurance-Key Facts . Link:https://www.insuranceeurope.eu/sites/default/files/attachments/European%20Insurance%20-%20Key%20Facts %20-%20August%202016.pdf

  30. Jørgensen B (1982) Statistical Properties of the Generalized Inverse Gaussian Distribution. In: Lecture Notes in Statistics, vol 9. Springer, New York

  31. Kaas R, Goovaerts M, Dhaene J, Denuit M (2008) Modern actuarial risk theory: using R, 2nd edn. Springer, Berlin, Heidelberg

    Book  MATH  Google Scholar 

  32. Karlis D (2001) A general EM approach for maximum likelihood estimation in mixed Poisson regression models. Stat Model 1(4):305–318

    Article  MATH  Google Scholar 

  33. Karlis D (2005) EM algorithm for mixed Poisson and other discrete distributions. ASTIN Bull J IAA 35(1):3–24

    Article  MathSciNet  MATH  Google Scholar 

  34. Klugman S, Panjer H, Willmot G (1998) Loss models. From data to decisions. Wiley, New York

    MATH  Google Scholar 

  35. Lambert D (1992) Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34(1):1–14

    Article  MATH  Google Scholar 

  36. Lemaire J (1995) Bonus-Malus systems in automobile insurance. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  37. Lemaire J, Park SC, Wang KC (2015) The impact of covariates on a Bonus-Malus system: an application of Taylor’s model. Eur Actuar J 5(1):1–10

    Article  MathSciNet  Google Scholar 

  38. Lemaire J, Park SC, Wang KC (2016) The use of annual mileage as a rating variable. ASTIN Bull 46(1):39–69

    Article  MathSciNet  MATH  Google Scholar 

  39. Louis TA (1982) Finding the observed information matrix when using the EM algorithm. J R Stat Soc B 44:226–233

    MathSciNet  MATH  Google Scholar 

  40. McLachlan G, Krishnan T (2007) The EM algorithm and extensions, vol 382. Wiley, Hoboken

    MATH  Google Scholar 

  41. Picech L (1994) The merit-rating factor in a multiplicating rate-making model. ASTIN Colloquium, Cannes

    Google Scholar 

  42. Pinquet J (1997) Allowance for cost of claims in bonus-malus systems. ASTIN Bull 27:33–57

    Article  Google Scholar 

  43. Pinquet J (1998) Designing optimal bonus-malus systems from different types of claims. ASTIN Bull 28:205–220

    Article  MATH  Google Scholar 

  44. Seshardi V (1993) The Inverse Gaussian Distribution. Oxford Science Publications, Oxford

    Google Scholar 

  45. Shengwang M, Wei Y, Whitmore GA (1999) Accounting for individual overdispersion in a bonus-malus automobile insurance system. ASTIN Bull J IAA 29(2):327–337

    Article  Google Scholar 

  46. Stone M (1977) An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. J R Stat Soc Ser B 39:44–7

    MathSciNet  MATH  Google Scholar 

  47. Trembley L (1992) Using the Poisson inverse Gaussian in bonus-malus systems. ASTIN Bull 22(1):97–106

    Article  Google Scholar 

  48. Tzougas G, Vrontos S, Frangos N (2014) Optimal bonus-malus systems using finite mixture models. ASTIN Bull 44(02):417–444

    Article  MathSciNet  MATH  Google Scholar 

  49. Tzougas G, Vrontos S, Frangos N (2015) Risk classification for claim counts and losses using regression models for location, scale and shape. Variance 9(1):140–157

    Google Scholar 

  50. Tzougas G, Vrontos S, Frangos N (2018) Bonus-malus systems with two-component mixture models arising from different parametric families. N Am Actuar J 22(1):55–91

    Article  MathSciNet  MATH  Google Scholar 

  51. Vuong Q (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57:307–333

    Article  MathSciNet  MATH  Google Scholar 

  52. Yip K, Yau K (2005) On modeling claim frequency data in general insurance with extra zeros. Insur Math Econ 36:153–63

    Article  MATH  Google Scholar 

  53. Zamani H, Ismail N (2010) Negative binomial-Lindley distribution and its application. J Math Stat 6(1):4–9

    Article  MATH  Google Scholar 

  54. Zhou M, Li L, Dunson D, Carin L (2012) Lognormal and gamma mixed negative binomial regression. In: Proceedings of the... International Conference on Machine Learning. International Conference on Machine Learning (vol 2012, p 1343). NIH Public Access

Download references

Acknowledgements

The research reported here has been supported by LSE LIFE and LSE Teaching and Learning Centre. We would like to thank the two anonymous referees for their constructive comments and suggestions that have greatly improved the paper. We also would like to thank the participants at the 10th International Conference of the ERCIM WG on Computational and Methodological Statistics. The usual disclaimer applies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Tzougas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzougas, G., Hoon, W.L. & Lim, J.M. The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking. Eur. Actuar. J. 9, 323–344 (2019). https://doi.org/10.1007/s13385-018-0186-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13385-018-0186-2

Keywords

Navigation