Skip to main content
Log in

Membrane phase behavior of a psychrotrophic and mesophilic bacillus

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The phase properties of membranes isolated from the psychrotrophBacillus psychrophilus and the mesophileB. megaterium were examined using wide-angle X-ray diffraction. The temperature at which the transition from liquid-crystalline to crystalline (gel) phase occurred was below −30°C for both microorganisms, regardless of the temperature at which the microbial cells were grown. Thus the membranes for both microorganisms were exclusively liquid-crystalline over the entire growth temperature range. Indeed, the membrane was completely fluid at temperatures where growth of the psychrotroph ceases, thus indicating that the phase transition temperature is not the determinant of the minimum growth temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Byrne, P., Chapman, D. 1964. Liquid crystalling nature of phospholipids. Nature202:987–988.

    Article  Google Scholar 

  2. Chapman, D. 1967. The effect of heat on membranes and membrane constituents, pp. 123–146. In: Rose, A. E. (ed.), Thermobiology. New York: Academic Press.

    Google Scholar 

  3. Engelman, D. M. 1970. X-ray diffraction studies of phase transitions in the membrane ofMycoplasma laidlawii. Journal of Molecular Biology47:115–117.

    Article  PubMed  CAS  Google Scholar 

  4. Esfahani, M., Limbrick, A. R., Knutton, S., Oka, T., Wakil, S. J. 1971. The molecular organization of lipids in the membrane ofEscherichia coli: Phase transitions. Proceedings of the National Academy of Sciences of the United States of America68:3180–3184.

    Article  PubMed  CAS  Google Scholar 

  5. Farrell, J., Rose, A. H. 1967. Temperature effects on microorganisms, pp. 147–218. In: Rose, A. E. (ed.) Thermobiology. New York: Academic Press.

    Google Scholar 

  6. Gelmann, F. P., Cronan, J. E., Jr. 1972. Mutant ofEscherichia coli deficient in the synthesis ofcis-vaccenic acid. Journal of Bacteriology112:381–387.

    PubMed  CAS  Google Scholar 

  7. Inniss, W. E., Ingraham, J. L. 1978. Microbial life at low temperatures: Mechanisms and molecular aspects, pp. 73–104. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London: Academic Press.

    Google Scholar 

  8. Kaneda, T. 1972. Positional preference of fatty acids in phospholipids ofBacillus cereus and its relation to growth temperature. Biochimica et Biophysica Acta280:297–305.

    PubMed  CAS  Google Scholar 

  9. McElhaney, R. N., Souza, K. A. 1976. The relationship between environmental temperature, cell growth and the fluidity and physical state of the membrane lipids inBacillus stearothermophilus. Biochimica et Biophysica Acta443:348–359.

    Article  PubMed  CAS  Google Scholar 

  10. McKersie, B. D., Thompson, J. E. 1977. Lipid crystallization in senescent membranes from cotyledons. Plant Physiology59:803–807.

    Article  PubMed  CAS  Google Scholar 

  11. McKersie, B. D., Thompson, J. E. 1978. Phase behavior of chloroplast and microsomal membranes during leaf senescence. Plant Physiology61:639–643.

    PubMed  CAS  Google Scholar 

  12. McKersie, B. D., Thompson, J. E., Brandon, J. K. 1976. X-ray diffraetion evidence for decreased lipid fluidity in senescent membranes from cotyledons. Canadian Journal of Botany54:1074–1078.

    Google Scholar 

  13. Marr, A. G., Ingraham, J. L. 1962. Effect of temperature on the composition of fatty acids inEscherichia coli. Journal of Bacteriology84:1260–1267.

    PubMed  CAS  Google Scholar 

  14. Morita, R. Y. 1975. Psychrophilic bacteria. Bacteriological Reviews39:144–167.

    PubMed  CAS  Google Scholar 

  15. Paton, J. C., McMurchie, E. J., May, B. K., Elliott, W. H. 1978. Effect of growth temperature on membrane fatty acid composition and susceptibility to cold shock ofBacillus amyloliquefaciens. Journal of Bacteriology135:754–759.

    PubMed  CAS  Google Scholar 

  16. Shaw, M. K., Ingraham, J. L. 1965. Patty acid composition ofEscherichia coli as a possible controlling factor of the minimal growth temperature. Journal of Bacteriology90:141–146.

    PubMed  CAS  Google Scholar 

  17. Shecter, E., Letellier, L., Gulik-Krzywicki, T. 1974. Relations between structure and function in cytoplasmic membrane vesicles isolated from anEscherichia coli fatty-acid auxotroph. European Journal of Biochemistry49:61–76.

    Article  Google Scholar 

  18. Simensky, M. 1971. Temperature control of phospholipid biosynthesis inEscherichia coli. Journal of Bacteriology106:449–455.

    Google Scholar 

  19. Simensky, M. 1974. Homeoviscous adaption—a homeostatic process that regulates the viseosity of membrane lipids inEscherichia coli. Proceedings of the National Academy of Sciences of the United States of America71:522–525.

    Article  Google Scholar 

  20. Stokes, J. L. 1963. General biology and nomenclature of psychrophilic microorganisms, pp. 187–192. In: Gibbons, N. E., (ed.), Recent progress in microbiology, vol. 8. Toronto: University of Toronto Press.

    Google Scholar 

  21. Thompson, J. E., Mayfield, C. I., Inniss, W. E., Butler, D. E., Kruuv, J. 1978. Senescence-related changes in the lipid transition temperature of microsomal membranes from algae. Physiologia Plantarum43:114–120.

    Article  CAS  Google Scholar 

  22. Wilson, G., Fox, C. F. 1971. Biogenesis of microbial transport systems: Evidence for coupled incorporation of newly synthesized lipids and proteins into membrane. Journal of Molecular Biology55:49–60.

    Article  PubMed  CAS  Google Scholar 

  23. Wilson, G., Rose, S. P., Fox, C. F. 1970. The effect of membrane lipid unsaturation on glycoside transport. Biochemical and Biophysical Research Communications.38:617–623.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inniss, W.E., Thompson, J.E. & Mayfield, C.I. Membrane phase behavior of a psychrotrophic and mesophilic bacillus. Current Microbiology 2, 147–150 (1979). https://doi.org/10.1007/BF02605872

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02605872

Keywords

Navigation