Skip to main content
Log in

Changes in sodium-lithium countertransport correlate with changes in triglyceride levels and body mass index over 2 1/2 years of follow-up in utah

  • Hypertension
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Sumamry

We have previously reported from a cross-sectional study that plasma total cholesterol, triglycerides, and HDL-C were significantly and independently correlated with Na+−Li+ countertransport. These original participants were rescreened 2 1/2 years later (range of 20–58 months), with lipid, blood pressure, and Na+−Li+ countertransport measurements from both visits on 906 normotensive adults. The correlation found between age-and sex-adjusted triglyceride levels and Na+−Li+ countertransport at visit 1 (r=0.34, p<0.0001) was reconfirmed at visit 2 (r=0.32, p<0.0001). The Na+−Li+ countertransport correlations with HDL-C (r=−0.11, p<0.01) and body mass index (r=0.24, p<0.0001) also remained at visit 2. After 30 months, there were significant increases of triglyceride, body mass index, blood pressure, and Na+−Li+ countertransport levels, and significant decreases of HDL-C and total cholesterol levels, after adjusting the changes in these variables between visit 2 and visit 1 for age, sex, time between the two visits, and the visit 1 level of the variable. Increases in triglycerides, cholesterol, and body mass index were significantly correlated with increases in Na+−Li+ countertransport (r=0.23, r=0.19, and r=0.21, respectively). The correlations of the lipid and lipoprotein changes with Na+−Li+ countertransport changes were independent of body mass index and blood pressure changes. We conclude that increasing plasma triglyceride levels and body mass index are associated with increasing Na+−Li+ countertransport levels in both cross-sectional and longitudinal data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canessa M, Adragna N, Solomon HS, et al. Increased sodium-lithium countertransport in red cells of patients with essential hypertension.N Engl J Med 1980;302:772–776.

    Article  PubMed  CAS  Google Scholar 

  2. Williams RR, Hunt SC, Kuida H, et al. Sodium-lithium countertransport in erythrocytes of hypertension prone families in Utah.Am J Epidemiol 1983;118:338–344.

    PubMed  CAS  Google Scholar 

  3. Hunt SC, Williams RR, Smith JB, et al. Associations of three erythrocyte cation transport systems with plasma lipids in Utah subjects.Hypertension 1986;8:30–36.

    PubMed  CAS  Google Scholar 

  4. Canessa M, Morgan K, Semplicini A. Genetic differences in lithium-sodium exchange and regulation of the sodium-hydrogen exchanger in essential hypertension.J Cardiovasc Pharmacol 1988;12:S92-S98.

    PubMed  Google Scholar 

  5. Hasstedt SJ, Wu LL, Ash KO, et al. Hypertension and sodium-lithium countertransport in Utah pedigrees: Evidence for major-locus inheritance.Am J Hum Genet 1988;43:14–22.

    PubMed  CAS  Google Scholar 

  6. Boerwinkle E, Turner ST, Weinshilboum R, et al. Analysis of the distribution of erythrocyte sodium lithium countertransport in a sample representative of the general population.Genet Epidemiol 1986;3:365–378.

    Article  PubMed  CAS  Google Scholar 

  7. Cooper R, LeGrady D, Nanas S, et al. Increased sodium-lithium countertransport in college students with elevated blood pressure.JAMA 1983;249:1030–1034.

    Article  PubMed  CAS  Google Scholar 

  8. Weder AB, Torretti BA, Julius S. Racial differences in erythrocyte cation transport.Hypertension 1984;6:115–123.

    PubMed  CAS  Google Scholar 

  9. Tuck ML, Gross C, Maxwell MH, et al. Erythrocyte Na+, K+ cotransport and Na+, K+ pump in black and Caucasion hypertensive patients.Hypertension 1984;6:536–544.

    PubMed  CAS  Google Scholar 

  10. Trevisan M, Ostrow D, Cooper R, et al. Abnormal red blood cell ion transport and hypertension: The people's gas company study.Hypertension 1983;5:363–367.

    PubMed  CAS  Google Scholar 

  11. Worley RJ, Hentschel WM, Cormier C, et al. Increased sodium-lithium countertransport in erythrocytes of pregnant women.N Engl J Med 1982;307:412–416.

    Article  PubMed  CAS  Google Scholar 

  12. Adragna NC, Chang JL, Morey MC, Williams RS. Effect of exercise on cation transport in human red cells.Hypertension 1985;7:132–139.

    PubMed  CAS  Google Scholar 

  13. Williams RR, Hunt SC. Recruitment of members of high-risk Utah pedigrees.Controlled Clin Trials 1987;8:105S-114S.

    Article  PubMed  CAS  Google Scholar 

  14. Levine JB, Zak B. Automated determination of serum total cholesterol.Clin Chim Acta 1964;10:381–384.

    Article  PubMed  CAS  Google Scholar 

  15. Wahlefeld AW. Triglycerides: Determination after enzymatic hydrolysis. In: Bergmeyer HU, ed.Methods of enzymatic analysis, Vol 4, New York: Academic Press, 1974: 1831–1835.

    Google Scholar 

  16. Warnick GR, Cheung MC, Albers JJ. Comparison of current methods for high density lipoprotein cholesterol quantitation.Clin Chem 1979;25:596–604.

    PubMed  CAS  Google Scholar 

  17. Warnick GR, Benderson JM, Albers JJ. Dextran sulfate-Mg2+ precipitation procedure for quantitation of high-density lipoprotein cholesterol.Clin Chem 1982;28:1379–1388.

    PubMed  CAS  Google Scholar 

  18. Smith JB, Ash KO, Hentschel WM, et al. A simplified method for simultaneously determining countertransport and cotransport in human erythrocytes.Clin Chim Acta 1984;137:169–177.

    Article  PubMed  CAS  Google Scholar 

  19. Smith JB, Price AL, Williams RR, et al. A reproducible sodium-lithium countertransport assay: The outcome of changing key laboratory parameters.Clin Chim Acta 1982;122:327–335.

    Article  PubMed  CAS  Google Scholar 

  20. Woods JW, Falk RJ, Pittman AW, et al. Increased red-cell sodium-lithium countertransport in normotensive sons of hypertensive parents.N Engl J Med 1982;306:593–595.

    Article  PubMed  CAS  Google Scholar 

  21. Canessa M, Spalvins A, Adragna N, Falkner B. Red cell sodium countertransport and cotransport in normotensive and hypertensive blacks.Hypertension 1984;6:344–351.

    PubMed  CAS  Google Scholar 

  22. Hespel P, Lijnen P, Fagard R, et al. Changes in erythrocyte sodium and plasma lipids associated with physical training.J Hypertens 1988;6:159–166.

    PubMed  CAS  Google Scholar 

  23. Wu LL, Hunt SC, Afman G, et al. Genetic concordance of and exercise effects on low density lipoprotein subfractions in Utah twins.Circulation 1988;78:II-480.

    Google Scholar 

  24. Wiliams PT, Krauss RM, Vranizan KM, Wood PD. Exercise-induced and diet-induced weight loss produce similar changes in lipoprotein subfraction levels.Circulation 1988;78:II-195.

    Google Scholar 

  25. McNamara JR, Compos H, Ordovas JM, et al. Effect of gender, age and lipid status on low density lipoprotein subfraction distribution: Results from the Framingham off-spring study.Arteriosclerosis 1987;7:483–490.

    PubMed  CAS  Google Scholar 

  26. Austin MA, Breslow JL, Hennekens CH, et al. Low-density lipoprotein subclass patterns and risk of myocardial infarction.JAMA 1988;260:1917–1921.

    Article  PubMed  CAS  Google Scholar 

  27. Hunt SC, Wu LL, Hopkins PN, et al. Apolipoprotein, LDL subfraction, and insulin associations with familial combined hyperlipidemia in Utah patients with familial dyslipidemic hypertension.Arteriosclerosis 1989;9:335–344.

    PubMed  CAS  Google Scholar 

  28. Williams RR, Hunt SG, Hopkins PN, et al. Familial dyslipidemic hypertension: Evidence from 58 Utah families for a syndrome present in approximately 15% of patients with essential hypertension.JAMA 1988;259:3579–3586.

    Article  PubMed  CAS  Google Scholar 

  29. Bing FR, Heagerty AM, Swales JD. Dietary changes in membrane lipids and leucocyte calcium.J Cardiovasc Pharmacol 1988;12:S110-S113.

    Article  PubMed  Google Scholar 

  30. Ollerenshaw JD, Heagerty AM, Bing FR, Swales JD. Abnormalities of erythrocyte membrane fatty acid composition in human essential hypertension.J Hum Hypertens 1987;1:9–12.

    PubMed  CAS  Google Scholar 

  31. Sprafka JM, Folsom AR, Burke GL, Edlavitch SA. Prevalence of cardiovascular disease risk factors in blacks and whites: The Minnesota heart survey.Am J Public Health 1988;78:1546–1549.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, S.C., Williams, R.R. & Ash, K.O. Changes in sodium-lithium countertransport correlate with changes in triglyceride levels and body mass index over 2 1/2 years of follow-up in utah. Cardiovasc Drug Ther 4 (Suppl 2), 357–362 (1990). https://doi.org/10.1007/BF02603176

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02603176

Key Words

Navigation