Skip to main content
Log in

Basic magma generation and aggregation

  • Special Lecture
  • Published:
Bulletin Volcanologique Aims and scope Submit manuscript

Abstract

Basic magma generation in the mantle at the present stage of earth history probably begins most commonly in metamorphosed garnet peridotite at those points where the four major phases meet; the solidus defines the spatial limits of the region of melting at the site of origin. On the basis of the forsterite-diopside-pyrope system and the melting relations of natural garnet peridotite at high pressures, the melting is invariant-like up to about 30% liquid. If the melt is fractionally removed, melting temporarily ceases after this limit is reached, terminating the production of liquid of invariant-like composition. Because one phase is eventually consumed at the invariant-like point, melting might be resumed at a higher temperature, generating a different liquid of more basic composition at the invariant-like point governing the assemblage of remaining phases. The garnet peridotite becomes permeable to melt almost immediately after the melting process begins, as has been demonstrated by the large increase in measured electrical conductivity. A large volume of relatively homogeneous liquid can, therefore, be extracted as it is produced.

Continuous heating of the parental material by conduction from a hot source below results in a series of liquid compositions, determined predominantly by the thermal gradient, with the greater degree of melting at the bottom. Conversely, heating of the parental material by adiabatic rise also results in a series of liquid compositions, determined predominantly by the pressure gradient, with the greater degree of melting at the top. Tapping from the top of parental materials partially melted in these two different ways results in successions of lavas having opposite sequences of magma composition.

Segregation of the melt occurs under small stress differences, and the melt penetrates the plastic envelope around the magma chamber by means of ephemeral, slowly propagating, ductile faults. The envelope may extend out to a physical boundary at about 0.8 of the temperature of the beginning of melting. The boundary of the zone characterized by plastic behavior may be either sharp or gradual depending on the strain rate. In the brittle region outside the plastic region, magmafracting (similar to hydrofracting) takes place and the cracks are propagated episodically, producing earthquakes.

If a liquid is extracted fractionally under small stress differences from host rocks with temperature or pressure gradients, convective mixing at the site of origin or in an auxiliary chamber may be necessary to account for the limited variation of trace elements in some large-volume extrusions. Isotopic variations between local magma may result from small-scale heterogeneity in the mantle, but is not likely to be due to disequilibrium melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allegre, C. J., Treuil, M., Minster, J.-F., Minster, B. andAlbarède, F., 1977.Systematic Use of Trace Element in Igneous Process. Part. I. Fractional Crystallization Processes in Volcanic Suites. Contrib. Mineral. Petrol.,60, p. 57–75.

    Article  Google Scholar 

  • Arndt, N. T., 1977a, The Separation of Magmas from Partially Molten Peridotite. Carnegie Inst. Washington Year Book,76, p. 424–428.

    Google Scholar 

  • ————, 1977b, Ultrabasic Magmas and High-Degree Melting of the Mantle. Contrib. Mineral. Petrol.,64, p. 205–221.

    Article  Google Scholar 

  • Basu, A. R. andMurthy, V. R., 1977,Ancient Lithospheric Lherzolite Xenolith in Alkali Basalt from Baja California. Earth Planet. Sci. Lett.,35, p. 239–246.

    Article  Google Scholar 

  • Bouloer, F. andNicolas, A., 1972,Fusion partielle gabbroique dans la lherzolite de Lanzo. Bull. Swiss Minéral. Pétrogr.,52, p. 39–56.

    Google Scholar 

  • Boyd, F. R., 1973,A Pyroxene Geotherm. Geochim. Cosmochim. Acta,37, p. 2533–2546.

    Article  Google Scholar 

  • ———— andMcCallister, R. H., 1976,Densities of Fertile and Sterile Garnet Peridotites. Geophys. Res. Lett.,3, p. 509–512.

    Google Scholar 

  • Carter, N. L., andAve’Lallemant, H. G., 1970,High Temperature Flow of Dunite and Peridotite, Bull. Geol. Soc. Am.,81, p. 2181–2202.

    Article  Google Scholar 

  • Cawthorn, R. G., 1975,Degrees of Melting in Mantle Diapirs and the Origin of Ultrabasic Liquids. Earth Planet. Sci. Lett.,27, p. 113–120.

    Article  Google Scholar 

  • Clarck, S. P., Jr., andRingwood, A. W., 1964,Density Distribution and Constitution of the Mantle. Rev. Geophys.,2, p. 35–88.

    Google Scholar 

  • Davis, B. T. C. andSchairer, J. F., 1965,Melting Relations in the Join Diopside-Forsterite-Pyrope at 40 Kilobars and at One Atmosphere. Carnegie Inst. Washington Year Book,64, p. 123–126.

    Google Scholar 

  • Ferguson, J., Ellis, D. J., andEngland, R. N., 1977,Unique Spinel-Garnet Lherzolite Inclusion in Kimberlite from Australia. Geology,5, p. 278–280.

    Article  Google Scholar 

  • Fujh, T., andKusihro, I., 1977,Density, Viscosity, and Compressibility of Basaltic Liquid at High Pressures. Carnegie Inst. Washington Year Book,76, p. 419–424.

    Google Scholar 

  • Gast, P. W., 1968,Trace Element Fractionation and the Origin of Tholeiitic and Alkaline Magma Types. Geochim. Cosmochim. Acta,32, p. 1057–1086.

    Article  Google Scholar 

  • Griggs, D. T., Turner, F. J., andHeard, C. C., 1960,Deformation of Rocks at 500° to 800°C. Geol. Soc. Am. Mem.,79, p. 39–104.

    Google Scholar 

  • Hart, S. R., 1971,K, Rb, Cs, Sr and Ba Contents and Sr Isotope Ratios of Ocean Floor Basalts. Phil. Trans. Roy. Soc. London, Ser. A,268, p. 573–587.

    Google Scholar 

  • Hertogen, J. andGijbels, R., 1976,Calculation of Trace Element Fractionation during Partial Melting. Geochim. Cosmochim. Acta,40, p. 313–322.

    Article  Google Scholar 

  • Hofmann, A. W. andHart, S. R., 1975,An Assessment of Local and Regional Isotopic Equilibrium in a Partially Molten Mantle, Carnegie Inst. Washington Year Book,74, p. 195–210.

    Google Scholar 

  • ———— and ————, 1978,An Assessment of Local and Regional Isotopic Equilibrium in the Mantle, Earth Planet. Sci. Lett.,38, p. 44–62.

    Article  Google Scholar 

  • Holmes, A., 1931,The Problem of the Association of Acid and Basic Rocks in Central Complexes. Geol. Mag.,68, p. 241–255.

    Article  Google Scholar 

  • Irvine, T. N., 1970,Heat Transfer during Solidification of Layered Intrusions. I. Sheets and Sills. Can. J. Earth Sci.,7, p. 1031–1061.

    Google Scholar 

  • Kohlstedt, D. L. andGoetze, C., 1974,Low-Stress High-Temperature Creep in Olivine Single Crystals. J. Geophys. Res.,79, p. 2045–2051.

    Google Scholar 

  • Kushiro, I. andYoder, H. S., Jr., 1974,Formation of Eclogite from Garnet Lherzolite: Liquidus Relations in a Portion of the System MgSiO3-CaSiO3-Al2O3at High Pressures. Carnegie Inst. Washington Year Book,73, p. 266–269.

    Google Scholar 

  • ————, ———— andMysen, B. O., 1976,Viscosities of Basalt and Andesite at High Pressures. J. Geophys. Res.,81, p. 6351–6356.

    Google Scholar 

  • Lanphere, M. A., Wasserburg, G. J. F., Albee, A. L. andTilton, G. R. 1964,Redistribution of Strontium and Rubidium Isotopes during Metamorphism, World Beater Complex, Panamint Range, California, in Isotopic and Cosmic Chemistry, edited by H. Craig, S. L. Miller, and G. J. F. Wasserburg, p. 269–320, North-Holland, Amsterdam.

  • Maaløe, S. andAoki, K., 1977,The Major Element Composition of the Upper Mantle Estimated from the Composition of Lherzolites. Contrib. Mineral. Petrol.,63, p. 161–173.

    Article  Google Scholar 

  • Marsh, B. D., 1973,On the Cooling of Ascending Andesitic Magma, Phil. Trans. Roy. Soc. London, Ser. A,238, p. 611–625.

    Google Scholar 

  • Mogi, K., 1966,Pressure Dependence of Rock Strength and Transition from Brittle Fracture to Ductile Flow. Bull. Earthquake Res. Inst., Tokyo Univ.,44, p. 215–232.

    Google Scholar 

  • Murase, T., Kushiro, I. andFujh T., 1977a, Compressional Wave Velocity in Partially Molten Peridotite. Carnegic Inst. Washington Year Book,76, p. 414–416.

    Google Scholar 

  • ————, ———— and ————, 1977b, Electrical Conductivity of Partially Molten Peridotite. Carnegie Inst. Washington Year Book,76, p. 416–419.

    Google Scholar 

  • Mysen, B. O., 1978,Limits of Solution of Trace Elements in Minerals According to Henry’s Law: Review of Experimental Data. Geochim. Cosmochim. Acta,42, p. 871–885.

    Article  Google Scholar 

  • ———— andKushiro, I., 1977,Compositional Variations of Coexisting Phases with Degree of Melting of Peridotite in the Upper Mantle. Am. Mineral.,62, p. 843–865.

    Google Scholar 

  • Odé, H., 1960,Faulting as a Velocity Discontinuity in Plastic Deformation. Geol. Soc. Am. Mem.,79, p. 293–321.

    Google Scholar 

  • O’Hara, M. J., 1975,Is There an Icelandic Mantle Plume? Nature,253, p. 708–710.

    Article  Google Scholar 

  • O’Nions, R. K., Evensen, N. M., Hamilton, P. J. andCarter, S. R., 1978,Melting of the Mantle Past and Present: Isotope and Trace Element Evidence. Phil. Trans. Roy. Soc. London, Ser. A,288, p. 547–559.

    Google Scholar 

  • ———— andPankhurst, R. J., 1974,Rare-Earth Element Distribution in Archaean Gneisses and Anorthosites, Gothåb Area, West Greenland. Earth Planet. Sci. Lett.,22, p. 328–338.

    Article  Google Scholar 

  • Post, R. L., Jr., 1973,The Flow Laws of Mt. Dunite. Ph. D. Thesis. Univ. of Calif., Los Angeles, Calif., 272 p.

  • Presnall, D. C., 1969,The Geometric Analysis of Partial Fusion. Am. J. Sci.,267, p. 1178–1194.

    Article  Google Scholar 

  • ———— andPorath, H., 1972,Changes in Electrical Conductivity of a Synthetic Basalt during Melting. J. Geophys. Res.,77, p. 5665–5672.

    Google Scholar 

  • Ramberg, H., 1972,Mantle Diapirism and Its Tectonic and Magmagnetic Consequences. Phys. Earth Planet. Inter.,5, p. 45–60.

    Article  Google Scholar 

  • Savage, J. C., 1969,The Mechanics of Deep-Focus Faulting. Tectonphysics,8, p. 115–127.

    Article  Google Scholar 

  • Shaw, D. M., 1970,Trace Element Fractionation during Anatexis. Geochim. Cosmochim. Acta,30, p. 237–243.

    Article  Google Scholar 

  • Stueber, A. M. andIkramuddin, M., 1974,Rubidium, Strontium and the Isotopic Composition of Strontium in Ultramafic Nodule Minerals and Host Basalts. Geochim. Cosmochim. Acta,38, p. 207–216.

    Article  Google Scholar 

  • Swanson, D. A., 1972,Magma Supply Rate at Kilauea Volcano, 1952–1971, Science,175, p. 169–170.

    Article  Google Scholar 

  • Tatsumoto, M., Hedge, C. K. andEngel, A. E. J., 1965,Potassium, Rubidium, Strontium, Thorium, Uranium, and the Ratio of Strontium-87 to Strontium-86 in Oceanic Tholeiitic Basalt. Science,150, p. 886–888.

    Article  Google Scholar 

  • Turner, J. S. andChen, C. F., 1974,Two-Dimensional Effects in Double-Diffusive Convection. J. Fluid Mech.,63, p. 577–592.

    Article  Google Scholar 

  • Wright, T. L. andOkumara, R. T., 1977,Cooling and Crystallization of Tholeiitic Basalt, 1965, Makaopubi Lava Lake, Hawaii, U. S. Geol. Survey Prof. Paper,1004, 78 p.

  • ———— andPeck, D. L., 1968,March 1965 Eruption of Kilauea Volcano and the Formation of Makaopuhi Lava Lake. J. Geophys. Res.,73, p. 3181–3205.

    Article  Google Scholar 

  • Yoder, H. S., Jr., 1976,Generation of Basatic Magma. National Academy of Sciences. Washington, D. C., 265 p.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoder, H.S. Basic magma generation and aggregation. Bull Volcanol 41, 301–316 (1978). https://doi.org/10.1007/BF02597365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02597365

Keywords

Navigation