Skip to main content
Log in

Origin and development of the Star Mountain rhyolite

  • Published:
Bulletin Volcanologique Aims and scope Submit manuscript

Abstract

The Star Mountain rhyolite covers 500 square miles in the Davis Mountains, 100 miles east of El Paso, Texas. It appears to be the largest known rhyolitic mass to have been emplaced as a liquid flow rather than as a « froth flow » or nuée ardente. That it was emplaced as a liquid is shown by the lineation of phenocrysts, the vesicular and autobrecciated zones, baking of underlying tuffs, and by the complete absence of shard structures and evidence for welding. Three flow units with an aggregate thickness of 800 feet can be distinguished on the basis of field, chemical, and petrographic criteria. With the exception of some vesicular zones the rock is either finely crystalline and massive, or glassy and brecciated. Minor structures indicate that the flow of each unit was highly irregular.

Anorthoclase feldspar is the only significant phenocryst species in the unit. Phenocryst-groundmass compositional relationships cannot be explained on the basis of conventional granite system phase relationships, nor do recently proposed pantellerite relationships fit this case. An experimental investigation of this unusual case is under way.

A high temperature of extrusion of the rhyolite is indicated by the lack of measurable triclinicity in the feldspar. A low water vapor pressure is demonstrated by the presence of apparently primary magnetite and the scarcity of vesicular zones. Despite the low water content, high temperature caused the low viscosity necessary for the melt to spread over the 500 square mile outcrop area, presumably with approximately the same fluidity as a typical basalt flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, C. L. 1934,Major structural features of Trans-Pecos Texas. The Geology of Texas, vol. 2, Texas Univ. Bull., 3401, 137–214.

    Google Scholar 

  • Boyd, F. R., 1961,Welded tuffs and flows in the Rhyolite Plateau of Yellowstone Park, Wyoming. Bull. Geol. Soc. Am.,72, 387–426.

    Article  Google Scholar 

  • Buddington, A. F., &Lindsley, D. H., 1964,Iron titanium oxide minerals and synthetic equivalents, Jour. Petrol.,5, No. 2, 310–357.

    Google Scholar 

  • Carmichael, I. S. E., &Mackenzie, W. S., 1963,Feldspar-liquid equilibria in pantellerites: an experimental study. Am. Jour. Sci.,261, 382–396.

    Article  Google Scholar 

  • Cross, W., 1904,Analyses of West Texas rocks, Bull. Geol. Soc. Amer., 228.

  • Deer, W. A., Howie, R. A., Zussman, J., 1963,Rock-Forming Minerals: vol. 2,Chain Silicates, New York: Wiley, 379 pp.

    Google Scholar 

  • Dunnay, G., & Donnay, J. D. H., 1952,The symmetry change in the high-temperature alkali-feldspar series. Am. Jour. Sci., Bowen Vol., part 1, 115–132.

  • Dwyer, R. J., &Oldenberg, O., 1944,The dissociation of H2O into H + OH. Jour. Chem. Phys.,12, 351–361.

    Article  Google Scholar 

  • Eifler, G. K., Jr., 1951,Geology of the Barrilla Mountains, Texas, Bull. Geol. Soc. Amer.,62, 339–353.

    Article  Google Scholar 

  • Friedman, I., Long, W., &Saith, R. L., 1963,Viscosity and water content of rhyolite glass. Jour. Geophys. Res.,68, 6523–6535.

    Google Scholar 

  • Gibbon, D. L., &Wyllie, P. T., 1969,Experimental studies of igneous rock series: The Farrington Complex, North Carolina, and the Star Mountain rhyolite, Texas. Jour. Geol. 77, 221–239.

    Google Scholar 

  • Goldsmith, J. R., &Laves, F., 1954,Microcline-sanidine stability relations. Geochim et Cosmoch. Acta,5, 1–9.

    Article  Google Scholar 

  • Kennedy, G. C., 1948,Equilibrium between volatiles and iron oxides in igneous rocks. Am. Jour. Sci., 5th ser.,246, 529–549.

    Google Scholar 

  • Kozu, S., &Kani, K., 1935,Viscosity measurements of the ternary system Di-Ab-An at high temperature. Proceed. Imper. Acad. (Tokyo),11, pp. 383.

    Google Scholar 

  • Laves, F., 1950,The lattice and twinning of microcline and other potash feldspars. Jour. Geol.,58, 548–571.

    Google Scholar 

  • Lonsdale, J. T., 1940,Igneous rocks of the Terlingua-Solitario region, Texas. Bull. Geol. Soc. Amer.,51, 1539–1626.

    Google Scholar 

  • McAnulty, W. N., 1955,Geology of Cathedral Mountain quadrangle, Brewster County, Texas. Bull. Geol. Soc. Amer.,66, 531–578.

    Article  Google Scholar 

  • Nichols, R. L., 1939,Viscosity of lava. Jour. Geol.,47, 290–302.

    Google Scholar 

  • Orville, P. M., 1958,Feldspar investigations. Carnegic Inst Wash. Yearb.,57, 206–209.

    Google Scholar 

  • Phair, G., & Fisher, F. G., 1962,Laramide comagmatic series in the Colorado Front Range: the feldspars. InPetrologic Studies: A Volume to Honor A. F. Buddington.

  • Piwinski, A. J., 1965,Experimental study of rocks from a zoned pluton. Unpublished M. S. thesis, Penn State University.

  • Ross, C. S., 1962,Microlites in glassy volcanic rocks. Amer. Min.,47, 723–740.

    Google Scholar 

  • Shapiro, L., &Brannock, W. W., 1962,Rapid analysis of silicate, carbonate and phosphate rocks. U. S. Geol. Surv. Bull., 1144-A, 1–56.

    Google Scholar 

  • Shaw, H. R., 1963,Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature range 700° to 900° C. Jour. Geophys. Res.,68, No. 23, 6337–6343.

    Google Scholar 

  • Smith, R. L., 1960,Ash flows. Bull. Geol. Soc. Amer.,71, 795–841.

    Google Scholar 

  • Tröger, W. E., 1959,Optische Bestimmung der Gesteinsbildenden Minerale. Teil 1. Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung, 147 pp.

    Google Scholar 

  • Turner, F. J., &Verhoogen, J., 1960,Igneous and Metamorphic Petrology. New York: McGraw-Hill, 694 pp.

    Google Scholar 

  • Tuttle, O. F., 1952,Origin of the contrasting mineralogy of extrusive and plutonic salic rocks. Jour. Geol.,60, 107–124.

    Article  Google Scholar 

  • -----, &Bowen, N. L., 1958,Origin of granite in the light of experimental studies in the system NaAlSi s O s -KAlSi 1 O s -SiO 2-H 2 O. Geol. Soc. Amer. Mem.,74, 153 pp.

  • Winkler, H. G. F., 1960,La génèse du granite et des migmatites par anatéxie expérimentale. Revue de Géographie physique et de Géologie Dynamique, vol. III, fasc. 2, 67–76.

    Google Scholar 

  • —————, &Von Platen, H., 1961,Experimentelle gesteinmetamorphose: V. Experimentelle anatektische schmelzen und ihre petrogenetische bedeutung. Geochim. et. Cosmoch. Acta,24, 250–259.

    Article  Google Scholar 

  • —————, 1963,Effects of the changes in slope occurring on liquidus and solidus paths in the system diopside-anorthite-albite. Min. Soc. Amer. Special Paper,1, 204–212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbon, D.L. Origin and development of the Star Mountain rhyolite. Bull Volcanol 33, 438–474 (1969). https://doi.org/10.1007/BF02596519

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02596519

Keywords

Navigation