Skip to main content
Log in

Modeling particle fracture during the extrusion of aluminum/alumina composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Particle fracture during the extrusion of a 6061/Al2O3/20p composite has been modeled using a modified comminution formulation. It has been assumed that the particles contain a Poisson distribution of flaws, and that the distribution is specific to the alumina and the method of production; the particle distribution in the extrudate was characterized by the Rosin-Rammler (RR) distribution. The model relates macroscopic deformation variables to fracture and, starting with the distribution in the as-cast material in each case, is able to predict with reasonable accuracy changes in size distribution for three extrusion ratios. Some discrepancy between prediction and experiment occurs at small sizes. This is believed to result mainly from inaccuracies in the measured data and effects of the continuous size distribution in representing a set of discontinuous data. The model is potentially generalizable to any particulate-reinforced metal matrix composite (MMC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.-T. Park, E.J. Lavernia, and F.A. Mohamed:Acta Metall. Mater., 1990, vol. 38, pp. 2149–59.

    Article  CAS  Google Scholar 

  2. W. Dixon:5th Int. Aluminum Extrusion Technology Seminar, The Aluminum Association, Washington, 1992, vol. 1, pp. 429–36.

    Google Scholar 

  3. D.J. Lloyd:Acta Metall. Mater., 1991, vol. 39, pp. 59–71.

    Article  CAS  Google Scholar 

  4. W.H. Hunt, Jr., J.R. Brockenbrough, and P.E. Magnusen:Scripta Metall. Mater., 1991, vol. 25, pp. 15–20.

    Article  CAS  Google Scholar 

  5. J.D. Embury, J. Newell, and S. Tao:Metal Matrix Composites—Processing, Microstructure and Properties, Proc. 12th Risø Int. Symp. on Materials Science, N. Hansen, D. Juul Jensen, T. Leffers, H. Lilholt, T. Lorentzen, A.S. Pedersen, O.B. Pedersen, and B. Ralph, eds., Risø National Laboratory, Roskilde, Denmark, 1991, pp. 317–22.

    Google Scholar 

  6. W.S. Miller and F.J. Humphreys:Scripta Metall. Mater., 1991, vol. 25, pp. 33–38.

    Article  CAS  Google Scholar 

  7. J.D. Embury: inModeling the Deformation of Crystalline Solids, T.C. Lowe, A.D. Rollet, P.S. Follansbee, and G.S. Daehn, eds., TMS, Warrendale, PA, 1991, pp. 439–56.

    Google Scholar 

  8. P.M. Mummery, B. Derby, and C.B. Scruby:Acta Metall. Mater., 1993, vol. 41, pp. 1431–45.

    Article  CAS  Google Scholar 

  9. D.S. Liu, M. Manoharan, and J.J. Lewandowski:Metall. Trans. A, 1989, vol. 20A, pp. 2409–17.

    CAS  Google Scholar 

  10. Y. Brechet, J.D. Embury, S. Tao, and L. Luo:Acta Metall. Mater., 1991, vol. 39, pp. 1781–86.

    Article  CAS  Google Scholar 

  11. J. Llorca:Acta Metall. Mater., 1995, vol. 43, pp. 181–92.

    CAS  Google Scholar 

  12. T.R. McNelley and P.N. Kalu:Scripta Metall. Mater., 1991, vol. 25, pp. 1041–46.

    Article  CAS  Google Scholar 

  13. W.-C. Chen: Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1995.

    Google Scholar 

  14. W.-C. Chen, C.H.J. Davies, I.V. Samarasekera, E.B. Hawbolt, and J.K. Brimacombe:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 0000–00 accepted for publication.

    Google Scholar 

  15. T. Mochida, M. Taya, and D.J. Lloyd:Mater. Trans. JIM, 1991, vol. 32, pp. 931–42.

    CAS  Google Scholar 

  16. B.J.M. Aikin and T.H. Courtney:Metall. Trans. A, 1993, vol. 24A, pp. 2467–71.

    Google Scholar 

  17. J. Llorca and P. Poza:Mater. Sci. Eng., 1994, vol. A185, pp. 25–37.

    CAS  Google Scholar 

  18. C.H.J. Davies, W.-C. Chen, E.B. Hawbolt, I.V. Samarasekera, and J.K. Brimacombe:Scripta Metall. Mater., 1995, vol. 32, pp. 309–15.

    Article  CAS  Google Scholar 

  19. T. Allen:Particle Size Measurement, 4th. ed., Chapman & Hall, London, 1990, p. 161.

    Google Scholar 

  20. K. Wallin, T. Saario, and K. Törrönen:Int. J. Fract., 1987, vol. 32, pp. 201–09.

    Article  Google Scholar 

  21. B.R. Lawn:Fracture of Brittle Solids, 4th ed., CUP, Cambridge, UK. 1993, p. 12ff.

    Google Scholar 

  22. G.J. Richardson, D.N. Hawkins, and C.M. Sellars:Worked Examples in Metalworking, Institute of Materials, London, 1985, p. 141.

    Google Scholar 

  23. C.H.J. Davies, W.-C. Chen, I.V. Samarasekera, E.B. Hawbolt, and J.K. Brimacombe: inHigh Performance Metal and Ceramic Matrix Composites, K. Upadhya, ed., TMS, Warrendale, PA, 1994, pp. 195–202.

    Google Scholar 

  24. F.J. Humphreys and P.N. Kalu:Acta Metall., 1987, vol. 35, pp. 2815–29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, C.H.J., Chen, W.C., Lloyd, D.J. et al. Modeling particle fracture during the extrusion of aluminum/alumina composites. Metall Mater Trans A 27, 4113–4120 (1996). https://doi.org/10.1007/BF02595659

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595659

Keywords

Navigation