Skip to main content
Log in

Investigation of the temperature field developed by a spinning beam in laser processing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Various laser treatments have been developed for metallic surface modification. In these processes, rapid heating of a specific area on the surface by a laser is the critical feature employed to produce a different phase or layer on the surface. The laser beam mode, such as a Gaussian, rectangular, or annular beam in a stationary or spinning state, has been found to have a very important effect in the laser processing. Many significant models have been established to estimate the temperature field developed by a laser and therefore to predict the optimum conditions in the process, but these models are mainly applicable to a stationary beam. Previous work has shown the advantages in some applications of using a spinning beam. Therefore, modeling work for a spinning beam is necessary. The present article reworked our previous model on a spinning beam mode for a continuous CO2 laser, to calculate a two-dimensional temperature profile by using a line source and superposition of a number of Gaussian sources. An excellent agreement with experimental work for a nitrided Ti-6Al-4V alloy (IMI 318) for a situation of a small (50-µm) melt pool was achieved. A relationship was derived between the normalized laser power and specimen speed to produce a uniformly thick surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Schüssler, P.H. Steen, and P. Ehrhard:J. Appl. Phys., 1992, vol. 71, pp. 1972–75.

    Article  Google Scholar 

  2. K. Uenishi, A. Sugimoto, and K.F. Kobayashi:Z. Metallkd., 1992, vol. 83, pp. 241–45.

    CAS  Google Scholar 

  3. N.B. Dahotra, T.D. McCay, and M.H. McCay:J. Appl. Phys. 1989, vol. 65, pp. 5072–77.

    Article  Google Scholar 

  4. C.W. Draper and J.M. Poate:Int. Met. Rev., 1985, vol. 30, pp. 85–108.

    CAS  Google Scholar 

  5. K.P. Cooper and J.D. Ayers:Surf. Eng., 1985, vol. 1, pp. 263–72.

    Google Scholar 

  6. G. Abbas and D.R.F. West:Wear, 1991, vol. 143, pp. 353–63.

    Article  CAS  Google Scholar 

  7. K. Mohammed Jasim, R.D. Rawlings, R. Sweeney, and D.R.F. West:Mater. Sci. Lett., 1992, vol. 11, pp. 414–17.

    Article  Google Scholar 

  8. S. Mridha, C. Hu, H.S. Ubhi, A.W. Bowen, and T.N. Baker:Proc. World Conf. on Titanium, Birmingham, United Kingdom, Oct. 1995, in press.

  9. C. Hu and T.N. Baker: Final Report on Laser Processing of Titanium Alloy, MOD Research Agreement No. D/ERI/9/4.2065/073/XR/STR, June 1995.

  10. H.E. Cline and T.R. Anthony:J. Appl. Phys., 1977, vol. 48, pp. 3895–3900.

    Article  CAS  Google Scholar 

  11. N.N. Rykalin, A.A. Ugloy, and M.M. Nizametdinov:Sov. J. Quantum Electron, 1977, vol. 7, pp. 853–56.

    Article  Google Scholar 

  12. M. Lax:J. Appl. Phys., 1977, vol. 48, pp. 3919–24.

    Article  CAS  Google Scholar 

  13. Y.I. Nissim, A. Lietoila, R.B. Gold, and J.F. Gibbons:J. Appl. Phys., 1980, vol. 51, pp. 274–79.

    Article  CAS  Google Scholar 

  14. M. Davis, P. Kapadia, J. Dowden, W.M. Steen, and C.H.G. Courtney:J. Phys. D, Appl. Phys., 1986, vol. 19, pp. 1981–97.

    Article  CAS  Google Scholar 

  15. S. Kou:Metall. Trans. A, 1982, vol. 13A, pp. 363–71.

    CAS  Google Scholar 

  16. S. Kou, D.K. Sun, and Y.P. Le:Metall. Trans. A, 1983, vol. 14A, pp. 643–53.

    Google Scholar 

  17. B.W. Gu, T.C. Ma, S.K. Brown, and L. Mannik:Mater. Sci. Technol., 1994, vol. 10, pp. 425–30.

    CAS  Google Scholar 

  18. P.H. Steen, P. Ehrhard, and A. Schüssler:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 427–35.

    CAS  Google Scholar 

  19. M.F. Ashby and K.E. Easterling:Acta Metall., 1984, vol. 32, pp. 1935–48.

    Article  CAS  Google Scholar 

  20. M. Bass:Physical Process in Laser Material Interaction, M. Bertolotti, ed., Plenum Press, New York, NY, 1983, ch. 3.

    Google Scholar 

  21. H.R. Shercliff and M.F. Ashby:Metall. Trans. A, 1991, vol. 22A, pp. 2459–66.

    CAS  Google Scholar 

  22. C. Hu and T.N. Baker:Acta Metall., 1995, vol. 43, pp. 3563–69.

    Article  CAS  Google Scholar 

  23. T.J. Wieiting and J.T. Dchriempf:J. Appl. Phys., 1976, vol. 47 (9), pp. 4009–11.

    Article  Google Scholar 

  24. Metals Reference Book, 5th ed., C.J. Smithells, ed., Butterworth, and Co., London, 1976.

    Google Scholar 

  25. Titanium Alloys, R. Boter, G. Welsch, and E.W. Collings, eds., ASM INTERNATIONAL, Materials Park, OH, 1994, p. 489.

    Google Scholar 

  26. T.R. Anthony and H.E. Cline:J. Appl. Phys., 1977, vol. 48, pp. 3888–94.

    Article  CAS  Google Scholar 

  27. C. Chan, J. Mazumder, and M.M. Chen:Mater. Sci. Technol., 1987, vol. 3, pp. 306–11.

    CAS  Google Scholar 

  28. C. Hu, S. Mridha, H.S. Ubhi, A.W. Bowen, and T.N. Baker:Proc. 8th World Conf. on Titanium, Birmingham, United Kingdom, Oct. 1995, in press.

  29. Handbook of Chemistry and Physics, 61st ed., R.C. Weast and M.J. Astle, eds., CRC Press, Boca Raton, FL, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, C., Baker, T.N. Investigation of the temperature field developed by a spinning beam in laser processing. Metall Mater Trans A 27, 4039–4047 (1996). https://doi.org/10.1007/BF02595653

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595653

Keywords

Navigation