Skip to main content
Log in

Microstructure and fracture of SiC-particulate-reinforced cast A356 aluminum alloy composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A microstructural analysis of local microfracture of cast A356 Al-SiC p composites fabricated by permanent mold re-casting and squeeze-casting methods was made. Notch fracture toughness tests were conducted on these composites to identify critical fracture parameters using a stress-modified critical-strain criterion. The composite microstructure shows continuous networks of densely populated SiC and eutectic Si particles along the intercellular regions. Squeeze casting produces a more homogeneous structure and larger spacing of brittle particles and increases the tensile ductility and fracture toughness, while strength levels are almost identical to the re-casting case. The calculated values of the microstructurally characteristic distancel* for the re-cast and squeeze-cast composites are about 40 µm, which is comparable to the average sizes of the intercellular network. However, the reference critical strain\(\bar \varepsilon _0^* \) for squeeze casting is larger than that for re-casting, showing a trend to higher ductility and fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.M. Hosking, F.F. Portillo, R. Wunderlin, and R. Mehrabian:J. Mater. Sci., 1982, vol. 17, pp. 477–98.

    Article  CAS  Google Scholar 

  2. D.J. Lloyd:Compos. Sci. Technol., 1989, vol. 35, pp. 159–79.

    Article  CAS  Google Scholar 

  3. D.L. Davidson:Metall. Trans. A, 1991, vol. 22A, pp. 97–112.

    CAS  Google Scholar 

  4. R.D. Goolsby and L.K. Austin:Advances in Fracture Research, K. Salama, K. Ravi-Chandra, D.M.R. Taplin, and P. Rama Rao, eds., Pergamon Press, Oxford, United Kingdom, 1989, vol. 4, pp. 2423–35.

    Google Scholar 

  5. D.L. Davidson:Metall. Trans. A, 1991, vol. 22A, pp. 113–23.

    CAS  Google Scholar 

  6. C.R. Crowe, R.A. Gray, and D.F. Masson:Proc. 5th Int. Conf. on Composite Materials, W.C. Harrigan, Jr.et al., eds., TMS, Warrendale, PA, 1985, pp. 843–66.

    Google Scholar 

  7. M. Manoharan and J.J. Lewandowski:Scripta Metall., 1989, vol. 23, pp. 301–04.

    Article  CAS  Google Scholar 

  8. C.P. You, A.W. Thompson, and I.M. Bernstein:Scripta Metall., 1987, vol. 21, pp. 181–85.

    Article  CAS  Google Scholar 

  9. M.A. Bayoumi and M. Suery:ICCM & ECCM, F.L. Matthews, N.C.R. Busskell, J.M. Hopkinson, and J. Morton, eds., Elsevier, New York, NY, 1987, vol. 2, pp. 481–90.

    Google Scholar 

  10. J.J. Stephens, J.P. Lucas, and F.M. Hosking:Scripta Metall., 1988, vol. 22, pp. 1307–12.

    Article  CAS  Google Scholar 

  11. D.J. Lloyd, H. Lagace, A. McLeod, and P.L. Morris:Mater. Sci. Eng., 1989, vol. A107, pp. 73–80.

    CAS  Google Scholar 

  12. T. Iseki, T. Kameda, and T. Maruyama:J. Mater. Sci., 1984, vol. 19, pp. 1692–98.

    Article  CAS  Google Scholar 

  13. W.C. Moshier, J.S. Aheam, and D.C. Cooke:J. Mater. Sci., 1987, vol. 22, pp. 115–22.

    Article  CAS  Google Scholar 

  14. J.E. Hatch:Aluminum: Properties and Physical Metallurgy, ASM, Metals Park, OH, 1984, pp. 236–37.

    Google Scholar 

  15. B. Closset:Reduction and Casting of Aluminum, C. Bickert, ed., Pergamon Press, New York, NY, 1988, pp. 243–54.

    Google Scholar 

  16. G.A. Rozak, J.J. Lewandowski, J.F. Wallace, and A. Altmisoglu:J. Compos. Mater., 1992, vol. 26 (14), pp. 2076–2106.

    Article  CAS  Google Scholar 

  17. T.W. Clyne and J.F. Mason:Metall. Trans. A, 1987, vol. 18A, pp. 1519–30.

    CAS  Google Scholar 

  18. A. Mortensen, J.A. Cornie, and M.C. Flemmings:J. Met., 1988, vol. 40 (2), pp. 12–19.

    CAS  Google Scholar 

  19. G.A. Chadwick:Magnesium Technology, Institute of Metals, London, 1986, pp. 75–82.

    Google Scholar 

  20. B.C. Kim, S. Lee, D.Y. Lee, and N.J. Kim:Metall. Trans. A, 1991, vol. 22A, pp. 1889–92.

    CAS  Google Scholar 

  21. Y.-H. Kim, D. Kwon, and S. Lee:Acta Metall. Mater., 1994, vol. 42, pp. 1887–91.

    Article  CAS  Google Scholar 

  22. Y.-H. Kim, S. Lee, and D. Kwon:Scripta Metall. Mater., 1992, vol. 26, pp. 1457–62.

    Article  CAS  Google Scholar 

  23. A.T. Santhanam and R.C. Bates:Mater. Sci. Eng., 1979, vol. 41, pp. 243–50.

    Article  CAS  Google Scholar 

  24. J.R. Rice:J. Appl. Mech. Trans. ASME, 1968, vol. 35, pp. 379–86.

    Google Scholar 

  25. J.R. Rice and D.M. Tracey:J. Mech. Phys. Solids, 1969, vol. 17, pp. 201–17.

    Article  Google Scholar 

  26. D. Kwon and R.J. Asaro:Metall. Trans. A, 1990, vol. 21A, pp. 117–34.

    CAS  Google Scholar 

  27. A.C. Mackenzie, J.W. Hancock, and D.K. Brown:Eng. Fract. Mech., 1977, vol. 9, pp. 167–88.

    Article  CAS  Google Scholar 

  28. A. Levy and J.M. Papazian:Metall. Trans. A, 1990, vol. 21A, pp. 411–20.

    CAS  Google Scholar 

  29. S. Lee, T.H. Kim, and D. Kwon:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2213–23.

    CAS  Google Scholar 

  30. S. Lee:Scripta Metall., 1988, vol. 22, pp. 59–64.

    Article  CAS  Google Scholar 

  31. F.H. Samuel and A.M. Samuel:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2247–63.

    CAS  Google Scholar 

  32. Y.-H. Kim, S. Lee, N.J. Kim, and K. Cho:Scripta Metall. Mater., 1994, vol. 31, pp. 1629–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Suh, D. & Kwon, D. Microstructure and fracture of SiC-particulate-reinforced cast A356 aluminum alloy composites. Metall Mater Trans A 27, 3893–3901 (1996). https://doi.org/10.1007/BF02595638

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595638

Keywords

Navigation