Skip to main content
Log in

Fracture and fatigue-crack growth behavior in ductile-phase toughened molybdenum disilicide: Effects of niobium wirevs particulate reinforcements

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A study has been made of the fracture toughness/resistance-curve (R-curve) and cyclic fatigue-crack propagation behavior in a molybdenum disilicide composite, ductile-phase toughened with nominally 20 vol pct Nb-wire mesh reinforcements (Nb m /MoSi2); results are compared with monolithic MoSi2 and MoSi2 reinforced with 20 vol pct spherical Nb particles (Nb p /MoSi2). It is found that the high aspect ratio wire reinforcements induce significant toughening in MoSi2, both under monotonic and cyclic fatigue loading conditions. Specifically, the Nb m /MoSi2 composite exhibits R-curve behavior with a steady-state fracture toughness of ∼13 MPa\(\sqrt m \), compared to unstable fracture atK c values below 5 MPa\(\sqrt m \) in unreinforced MoSi2 or Nb p /MoSi2. Such behavior is seen to be associated with extensive crack deflection within the reaction layer between Nb and the matrix, which leads to crack bridging by the unbroken ductile phase. Similarly, resistance to fatigue-crack growth is found to be far superior in the wire-reinforced composite over pure MoSi2 and Nb p /MoSi2. Although crack paths are again characterized by extensive deflection along the Nb/matrix reaction layer, the role of crack bridging is diminished under cyclic loading due to fatigue failure of the Nb. Instead, the superior fatigue properties of the Nb m /MoSi2 composite are found to be associated with high levels of crack closure that result from highly deflected crack paths along the (Nb,Mo)5Si3 reaction layer interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Petrovic and A.K. Vasudévan: inIntermetallic Matrix Composites II, Materials Research Society Symposia Proceedings, D.B. Miracle, D.L. Anton, and J.A. Graves, eds., Materials Research Society, Pittsburgh, PA, 1992, vol. 273, pp. 229–39.

    Google Scholar 

  2. E. Fitzer, O. Rubisch, J. Schlichting, and I. Sewdas:Special Ceram., 1973, vol. 6.

  3. J. Schlichting:High Temp.-High Pressure, 1978, vol. 10, pp 241–69.

    CAS  Google Scholar 

  4. J.J. Petrovic:MRS Bull. 1993, vol. 18 (7), pp. 35–40.

    CAS  Google Scholar 

  5. R.M. Aikin, Jr.:Scripta Metall. Mater., 1992, vol. 26, pp. 1025–30.

    Article  CAS  Google Scholar 

  6. F.D. Gac and J.J. Petrovic:J. Am. Ceram. Soc., 1985, vol. 68, pp. C200-C201.

    Article  Google Scholar 

  7. D.H. Carter and G.F. Hurley:J. Am. Ceram. Soc., 1987, vol. 70, pp. C79-C81.

    Article  Google Scholar 

  8. J.M. Yang and S.M. Jeng: 1991J. Mater. Res., vol. 6, pp. 505–13.

    CAS  Google Scholar 

  9. J.J. Petrovic and R.E. Honnell:J. Mater. Sci., 1990, vol. 25, pp. 4453–56.

    Article  CAS  Google Scholar 

  10. U. Ramamurty, A.S. Kim, S. Suresh, and J.J. Petrovic:J. Am. Ceram. Soc., 1993, vol. 76, pp. 2461–72.

    Article  Google Scholar 

  11. U. Ramamurty, S. Suresh, and J.J. Petrovic:J. Am. Ceram. Soc., 1994, vol. 77, pp. 2681–88.

    Article  CAS  Google Scholar 

  12. T.C. Lu, A.G. Evans, R.J. Hecht, and R. Mehrabian:Acta Metall. Mater., 1991, vol. 39, pp. 1853–62.

    Article  CAS  Google Scholar 

  13. D.E. Alman and N.S. Stoloff:Mater. Res. Soc. Symp. Proc., 1992, vol. 273, pp. 247–52.

    CAS  Google Scholar 

  14. K.T. Venkateswara Rao, W.O. Soboyejo, and R.O. Ritchie:Metall. Trans. A, 1992, vol. 23A, pp. 2249–57.

    Google Scholar 

  15. V.D. Kristic:Phil. Mag., 1983, vol. 48, pp. 695–708.

    Google Scholar 

  16. L.S. Sigl, P.A. Mataga, B.J. Dalgleish, R.M. McMeeking, and A.G. Evans:Acta Metall., 1988, vol. 36 (4), pp. 945–53.

    Article  CAS  Google Scholar 

  17. L.S. Sigl and H.E. Exner:Metall. Trans. A, 1987, vol. 18A, pp. 1299–1308.

    CAS  Google Scholar 

  18. H.C. Cao, B.J. Dalgleish, H.E. Deve, C.K. Elliott A.G. Evans, R. Mehrabian, and G.R. Odette:Acta Metall., 1989, vol. 37, pp. 2969–77.

    Article  CAS  Google Scholar 

  19. K.T. Venkateswara Rao, G.R. Odette, and R.O. Ritchie:Acta Metall. Mater., 1992, vol. 40 (2), pp. 353–61.

    Article  Google Scholar 

  20. M.G. Mendiratta, J.J. Lewandowski, and D.M. Dimiduk:Metall. Trans. A, 1991, vol. 22A, pp. 1573–83.

    CAS  Google Scholar 

  21. M.F. Ashby, F.J. Blunt, and M. Bannister:Acta Metall., 1989, vol. 37, pp. 1847–57.

    Article  CAS  Google Scholar 

  22. K.T. Faber and A.G. Evans:Acta Metall., 1983, vol. 31, pp. 565–76.

    Article  Google Scholar 

  23. S.M. Pickard and A.K. Ghosh: inHigh-Temperature Ordered Intermetallic Alloys VI, Materials Research Society Symposia Proceedings, J. Horton, I. Baker, S. Hanada, R.D. Noebe, and D.S. Schwartz, eds., Materials Research Society, Pittsburgh, PA, 1995, vol. 364, pp. 905–10.

    Google Scholar 

  24. S.M. Pickard and A.K. Ghosh:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 909–21.

    CAS  Google Scholar 

  25. L. Xiao, Y.S. Kim, R. Abbaschian, and R.J. Hecht:Mater. Sci. Eng. A, 1991, vol. A144, pp. 277–85.

    CAS  Google Scholar 

  26. A.G. Metcalfe and M.J. Klein:Composite Materials—Interfaces in Metal Matrix Composites, Academic Press, New York, NY, 1974, vol. 1.

    Google Scholar 

  27. H. Chang, H. Kung, and R. Gibala: inIntermetallic Matrix Composites II, Materials Research Society Symposia Proceedings, D.B. Miracle, D.L. Anton, and J.A. Graves, eds., Materials Research Society, Pittsburgh, PA, 1992, vol. 273, pp. 253–58.

    Google Scholar 

  28. C.J. Gilbert, J.M. McNaney, R.H. Dauskardt, and R.O. Ritchie:ASTM J. Test. Eval., 1994, vol. 22 (2), pp. 117–20.

    Google Scholar 

  29. R.O. Ritchie, W. Yu, and R.J. Bucci:Eng. Fract. Mech., 1989, vol. 32, pp. 361–77.

    Article  Google Scholar 

  30. Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 1993, vol. 3.01.

  31. R.H. Dauskardt and R.O. Ritchie:Closed Loop, 1989, vol. 17, pp. 7–17.

    Google Scholar 

  32. W. Elber:Eng. Fract. Mech., 1970, vol. 2, pp. 37–45.

    Article  Google Scholar 

  33. S. Suresh and R.O. Ritchie: inFatigue Crack Growth Thresholds Concepts, D.L. Davidson and S. Suresh, eds., TMS-AIME, Warrendale, PA, 1984, pp. 227–61.

    Google Scholar 

  34. R.O. Ritchie and W. Yu: inSmall Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS-AIME, Warrendale, PA, 1986, pp. 167–89.

    Google Scholar 

  35. J. Kajuch, J.D. Rigney, and J.J. Lewandowski:Mater. Sci. Eng. A, 1992, vol. A155, pp. 59–65.

    CAS  Google Scholar 

  36. J. Kajuch, J. Short, and J.J. Lewandowski:Acta Metall. Mater., 1995, vol. 43, pp. 1955–67.

    Article  CAS  Google Scholar 

  37. P.C. Paris and F. Erdogan:J. Basic Eng., Trans. ASME, 1963, Ser. D, vol. 85, pp. 528–34.

    CAS  Google Scholar 

  38. R.O. Ritchie and R.H. Dauskardt: inThe Encyclopedia of Advanced Materials, D. Bloor, R.J. Brook, M.C. Flemings, and S. Mahajan, eds., Pergamon, Oxford, United Kingdom, 1994, vol. 2, pp. 791–98.

    Google Scholar 

  39. K.T. Venkateswara Rao, G.R. Odette, and R.O. Ritchie:Acta Metall. Mater., 1994, vol. 42, pp. 893–911.

    Article  Google Scholar 

  40. L. Murugesh, K.T. Venkateswara Rao, and R.O. Ritchie:Scripta Metall. Mater., 1993, vol. 29, pp. 1107–12.

    Article  CAS  Google Scholar 

  41. R.H. Dauskardt, M.R. James, J.R. Porter, and R.O. Ritchie:J. Am. Ceram. Soc., 1992, vol. 75, pp. 75–71.

    Article  Google Scholar 

  42. R.H. VanStone:Mater. Sci. Eng., 1988, vol. A103, pp. 49–61.

    CAS  Google Scholar 

  43. C.J. Gilbert, R.H. Dauskardt, and R.O. Ritchie:J. Am. Ceram. Soc., 1995, vol. 78, pp. 2291–300.

    Article  CAS  Google Scholar 

  44. J.E. Allison: inFracture Mechanics: Eighteenth Symposium, ASTM STP 945, D.T. Read and R.P. Reed, eds., ASTM, Philadelphia, PA, 1988, pp. 913–33.

    Google Scholar 

  45. A.G. Evans and R.M. McMeeking:Acta Metall., 1986, vol. 34, p. 2435.

    Article  Google Scholar 

  46. G.R. Odette, B.L. Chao, J.W. Sheckherd, and G.E. Lucas:Acta Metall. Mater., 1992, vol. 40, p. 2381.

    Article  CAS  Google Scholar 

  47. B. Budiansky, J.C. Amazigo, and A.G. Evans:J. Mech. Phys. Solids, 1988, vol. 36, pp. 167–87.

    Article  Google Scholar 

  48. B.A. Bilby, G.E. Cardew, and I.C. Howard:Fracture 1977, Proc. 4th Int. Conf on Fracture, D.M.R. Taplin, ed., Pergamon Press, New York, NY, 1977, vol. 3, pp. 197–212.

    Google Scholar 

  49. R.O. Ritchie:Mater. Sci. Eng., 1988, vol. A103, pp. 15–28.

    CAS  Google Scholar 

  50. S. Suresh:Metall. Trans. A, 1985, vol. 16A, pp. 249–60.

    CAS  Google Scholar 

  51. S. Suresh and R.O. Ritchie:Metall. Trans. A, 1982, vol. 13A, pp. 1627–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badrinarayanan, K., McKelvey, A.L., Ritchie, R.O. et al. Fracture and fatigue-crack growth behavior in ductile-phase toughened molybdenum disilicide: Effects of niobium wirevs particulate reinforcements. Metall Mater Trans A 27, 3781–3792 (1996). https://doi.org/10.1007/BF02595627

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595627

Keywords

Navigation