Skip to main content
Log in

Physiological constraints on changes in pH and phosphorus metabolite concentrations in ischemically exercising muscle: implications for metabolic control and for the interpretation of31P-magnetic resonance spectroscopic studies

  • Papers
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Relationships between pH and the concentrations of phosphocreatine (PCr), inorganic phosphate (Pi), and lactate during ischemic exercise depend on passive buffering, proton consumption as a consequence of net PCr breakdown, the control of glycogenolysis, (particularly in relation to the concentration of Pi, a substrate of glycogen phosphorylase that is produced by net PCr breakdown), and the creatine kinase equilibrium. The author analyzes the implications of these relationships for the interpretation of31P-magnetic resonance spectroscopic data and for the control of glycogenolysis. For realistic adenosine diphosphate (ADP) concentrations, given the constraints of the creatine kinase equilibrium, the pH must be near-linear with lactate, with an apparent buffer capacity (i.e., the ratio of lactate accumulation to pH change) that is nearly twice the true buffer capacity (i.e., the ratio of net proton loading to pH change). The implications for glycogenolytic control depend on adenosine triphosphate (ATP) turnover, but an upper limit of activation of glycogen phosphorylase (i.e., the amount of thea form) that would permit no increase in ADP concentration can be calculated. Phosphorylase activation during ischemic exercise seems approximately proportional to the power output, consistent with calcium stimulation of phosphorylaseb kinase. In simulations, ADP concentration is highly sensitive to this proportionality, as (unlike in purely oxidative exercise) ADP concentration is not known to participate in any closed feedback loops in ischemic exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold DL, Matthews PM, Radda GK (1984) Metabolic recovery after exercise and the assessment of mitochondrial functionin vivo in human skeletal muscle by means of P-31 NMR.Magn Reson Med 1: 307–315.

    Article  PubMed  CAS  Google Scholar 

  2. Pan JW, Hamm JR, Hetherington HP, Rothman DL, Shulman RG (1991) Correlation of lactate and pH in human skeletal muscle after exercise by1H NMR.Magn Reson Med 20: 57–65.

    Article  PubMed  CAS  Google Scholar 

  3. Sahlin K (1978) Intracellular pH and energy metabolism in skeletal muscle of man. With special reference to exercise.Acta Physiol Scand Suppl 455: 1–55.

    PubMed  CAS  Google Scholar 

  4. Bangsbo J, Johansen L, Graham T, Saltin B (1993) Lactate and H+ effluxes from human skeletal muscles during intense dynamic exercise.J Physiol (Lond) 462: 115–133.

    CAS  Google Scholar 

  5. Bangsbo J, Johansen L, Quistorff B, Saltin B (1993) NMR and analytical evaluation of CrP and nucleotides in the human calf during muscle contraction.J Appl Physiol 74: 2034–2039.

    PubMed  CAS  Google Scholar 

  6. Boska M (1994) ATP production rates as a function of force level in the human gastrocnemius/soleus group using31P MRS and1H MRI.Magn Reson Med 32: 1–10.

    Article  PubMed  CAS  Google Scholar 

  7. Kemp GJ, Thompson CH, Barnes PRJ, Radda GK (1994) Comparisons of ATP turnover in human muscle during ischaemic and aerobic exercise using31P magnetic resonance spectroscopy.Magn Reson Med 31: 248–258.

    Article  PubMed  CAS  Google Scholar 

  8. Roth K, Weiner MW (1991) Determination of cytosolic ADP and AMP concentrations and the free energy of ATP hydrolysis in human muscle and brain tissues with31P NMR spectroscopy [see correction inMagn Reson Med (1995)33: 282].Magn Reson Med 22: 505–511.

    Article  PubMed  CAS  Google Scholar 

  9. Sahlin K, Harris RC, Hultman E (1975) Creatine kinase equilibrium and lactate content compared with muscle pH in tissue samples obtained after isometric exercise.Biochem J 152: 173–180.

    PubMed  CAS  Google Scholar 

  10. Taylor DJ, Bore PJ, Gadian DG, Radda GK (1983) Bioenergetics of intact human muscle: a31P nuclear magnet resonance study.Mol Biol Med 1: 77–94.

    PubMed  CAS  Google Scholar 

  11. Zanconato S, Buchtal S, Barstow TJ, Cooper DM (1993)31P-Magnetic resonance spectroscopy of leg muscle metabolism during exercise in children and adults.J Appl Physiol 74: 2214–2218.

    PubMed  CAS  Google Scholar 

  12. Kemp GJ, Taylor DJ, Styles P, Radda GK (1993) The production, buffering and efflux of protons in human skeletal muscle during exercise and recovery.NMR Biomed 6: 73–83.

    Article  PubMed  CAS  Google Scholar 

  13. Meyer RA (1988) A linear model of muscle respiration explains monoexponential phosphocreatine changes.Am J Physiol 254: C548-C553.

    PubMed  CAS  Google Scholar 

  14. Kemp GJ (1994) Interactions of mitochondrial ATP synthesis and the creatine kinase equilibrium in skeletal muscle.J Theor Biol 170: 239–246.

    Article  PubMed  CAS  Google Scholar 

  15. Chasiotis D (1983) The regulation of glycogen phosphorylase and glycogen breakdown in human skeletal muscle.Acta Physiol Scand Suppl 518: 1–68.

    PubMed  CAS  Google Scholar 

  16. Aragon JJ, Tornheim K, Lowenstein JM (1980) On a possible role of IMP in the regulation of phosphorylase activity in skeletal muscle.FEBS Lett 117: K56-K64.

    Article  PubMed  Google Scholar 

  17. Ren JM, Hultman E (1989) Regulation of glycogenolysis in human skeletal muscle.J Appl Physiol 67: 2243–2248.

    PubMed  CAS  Google Scholar 

  18. Ren JM, Hultman E (1990) Regulation of phosphorylasea activity in human skeletal muscle.J Appl Physiol 69: 919–923.

    PubMed  CAS  Google Scholar 

  19. Kemp GJ, Thompson CH, Radda GK (1996) Explaining changes in pH and phosphorus metabolite concentrations in ischaemically exercising muscle (Abstract).4th Annual Meeting, International Society of Magnetic Resonance in Medicine, New York, p. 1061.

  20. Kemp GJ, Radda GK (1996) Physiological and regulatory constraints on changes in pH and phosphorus metabolite concentrations in ischaemically exercising muscle.7th International Meeting, BioThermoKinetics, Louvain-la-Neuve, Belgium, p. 96–100.

  21. Kemp GJ, Thompson CH, Sanderson AL, Radda GK (1994) pH control in rat skeletal muscle during exercise, recovery from exercise and acute respiratory acidosis.Magn Reson Med 31: 103–109.

    Article  PubMed  CAS  Google Scholar 

  22. Mainwood GW, Renaud JM (1985) The effect of acid-base balance on fatigue of skeletal muscle.Can J Physiol Pharmacol 63: 403–416.

    PubMed  CAS  Google Scholar 

  23. Wolfe CL, Gilbert HF, Brindle KM, Radda GK (1988) Determination of buffering capacity of rat myocardium during ischaemia.Biochim Biophys Acta 971: 9–20.

    PubMed  CAS  Google Scholar 

  24. Adams GR, Foley JM, Meyer RA (1990) Muscle buffer capacity estimated from pH changes during rest-to-work transitions.J Appl Physiol 69: 968–972.

    PubMed  CAS  Google Scholar 

  25. Yamada T, Kikuchi K, Sugi H (1993)31P nuclear magnetic resonance studies on the glycogenolysis regulation in resting and contracting frog skeletal muscle.J Physiol (Lond) 460: 273–286.

    CAS  Google Scholar 

  26. Kemp GJ, Sanderson AL, Thompson CH, Radda GK (1996) Regulation of oxidative and glycogenolytic ATP synthesis in exercising rat skeletal muscle.NMR Biomed 9: 261–270.

    Article  PubMed  CAS  Google Scholar 

  27. Dudley CRK, Taylor DJ, Ng LL, Kemp GJ, Ratcliffe PJ, Radda GK, Ledingham JGG (1990) Evidence of abnormal Na+/H+ antiport activity detected by phosphorus magnetic resonance spectroscopy in exercising skeletal muscle of patients with essential hypertension.Clin Sci 79: 491–497.

    PubMed  CAS  Google Scholar 

  28. Miller R, Boska M, Moussavi R, Carson P, Weiner M (1988)31P nuclear magnetic resonance studies of high energy phosphates and pH in human muscle fatigue.J Clin Invest 81: 1190–1196.

    Article  PubMed  CAS  Google Scholar 

  29. Fitts RH (1994) Cellular mechanisms of muscle fatigue.Physiol Rev 74: 49–94.

    PubMed  CAS  Google Scholar 

  30. Mannion AF, Jakeman PM, Willan PL (1993) Determination of human skeletal muscle buffer value by homogenate technique: methods of measurement.J Appl Physiol 75: 1412–1418.

    PubMed  CAS  Google Scholar 

  31. Conlee RK, McLane JA, Rennie MJ, Winder WW, Holloszy JO (1979) Reversal of phosphorylase activation in muscle despite continued contractile activity.Am J Physiol 237: R291-R296.

    PubMed  CAS  Google Scholar 

  32. Spriet LL (1992) Anaerobic metabolism in human skeletal muscle during short-term, intense activity.Can J Physiol Pharmacol 70: 157–165.

    PubMed  CAS  Google Scholar 

  33. Spriet LL, Soderlund K, Bergstrom M, Hultman E (1987) Anaerobic energy release in skeletal muscle during electrical stimulation in men.J Appl Physiol 62: 611–615.

    Article  PubMed  CAS  Google Scholar 

  34. Spriet LL, Soderlund K, Bergstrom M, Hultman E (1987) Skeletal muscle glycogenolysis, glycolysis, and pH during electrical stimulation in men.J Appl Physiol 62: 616–621.

    PubMed  CAS  Google Scholar 

  35. Connett RJ, Gayeski TEJ, Honig CR (1985) Energy sources in fully aerobic rest-work transitions: a new role for glycolysis.Am J Physiol 248: H922-H929.

    PubMed  CAS  Google Scholar 

  36. Connett RJ (1989)In vivo control of phosphofructokinase: system models suggest new experimental protocols.Am J Physiol 257: R878-R888.

    PubMed  CAS  Google Scholar 

  37. Fell DA (1992) Metabolic control analysis: a survey of its theoretical and experimental development.Biochem J 286: 313–330.

    PubMed  CAS  Google Scholar 

  38. Fell DA, Thomas S (1995) Physiological control of metabolic flux: the requirement for multisite modulation.Biochem J 311: 35–39.

    PubMed  CAS  Google Scholar 

  39. Taylor DJ, Thompson CH, Kemp GJ, Barnes PRJ, Sanderson AL, Radda GK, Phillips DIW (1995) A relationship between impaired fetal growth and reduced muscle glycolysis revealed by31P magnetic resonance spectroscopy.Diabetologia 38: 1205–1212.

    Article  PubMed  CAS  Google Scholar 

  40. Kushmerick MJ (1997) Multiple equilibria of cations with metabolites in muscle bioenergetics.Am J Physiol 272: C1739-C1747.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemp, G.J. Physiological constraints on changes in pH and phosphorus metabolite concentrations in ischemically exercising muscle: implications for metabolic control and for the interpretation of31P-magnetic resonance spectroscopic studies. MAGMA 5, 231–241 (1997). https://doi.org/10.1007/BF02594586

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02594586

Keywords

Navigation