Skip to main content
Log in

Central nervous system transplantation benefitted by low-power laser irradiation

  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The effect of low-power laser irradiation on mammalian central nervous system (CNS) transplantation is reported. Fetal brain allografts were transplanted into the brain (fornix region) of 20 adult rats and spinal cord allografts were transplanted into the spinal cord of eight dogs. For 21 days, the closed operated wounds of 10 rats and four dogs were exposed daily to transcutaneous low-power laser irradiation cw HeNe laser (16 mW, 632.8 nm, spot size 2 mm2, energy density of 30 J cm−2 for rats and 70 J cm−2 for dogs). This study shows that the low-power laser irradiation prevents extensive glial scar formation (a limiting factor in CNS regeneration) between neural transplants and host brain or spinal cord. Abundant capillaries developed in the laser-irradiated transplants, this being of crucial importance for their survival. The results of the present study and our previous investigations suggest that low-power laser irradiation is a novel tool for treatment of CNS injuries and disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguayo AJ, Benfey M, David S. A potential for axonal regeneration in neurons of the adult mammalian nerve system.Birth Defects: Original Article Series 1983,19:327–40

    CAS  Google Scholar 

  2. Barrett CP, Guth L, Donati EJ, Krikorian JG. Astroglial reaction in the gray matter of lumbar segments after midthoracic transection of the adult spinal cord.Exp Neurol 1981,73:365–77

    Article  PubMed  CAS  Google Scholar 

  3. Bjorklund A, Lindvall O, Isacson I et al. Mechanisms of action of intracerebral neural implants: studies on nigral and strial grafts to the lesioned striatum.TINS 1987,10:509–16

    Google Scholar 

  4. Bjorklund A, Steveni U, Dunnet SB. Transplantation of brainstem monoaminergic ‘command’ systems: Models for functional reactivation of damaged CNS circuitries. In: Kao CC, Bunge RP, Reier PJ (eds)Spinal cord reconstruction New York: Raven Press, 1983:397–413

    Google Scholar 

  5. Bjorklund A, Steveni U, Svendgaard NA. Growth of transplanted monoaminergic neurons into the adult hippocampus along the perforant path.Nature 1976,262:787–90

    Article  PubMed  CAS  Google Scholar 

  6. Chiasson RB.Laboratory anatomy of the white rat. 4th ed. Idaho: Wm. C. Brown Company Publishers, 1980

    Google Scholar 

  7. Clemente CD. Structural regeneration in the mammalian central nervous system and role of neuroglia and connective tissue. In: Windle WF (ed)Regeneration in the Central Nervous System. Illinois: Ch. C. Thomas, 1955:147–61

    Google Scholar 

  8. Das GD. Neural transplantation in the spinal cord of adult rats.J Neurol Sci 1983,62:191–210

    Article  PubMed  CAS  Google Scholar 

  9. Das GD. Neural transplantation in mammalian brain: some conceptual and technical considerations. In: Wallace RB, Das GD (eds)Neural tissue transplantation research. New York: Springer-Verlag, 1983:1–64

    Google Scholar 

  10. De La Torre JC. Spinal cord injury. Review of basic and applied research.Spine 1981,6:315–35

    Article  PubMed  Google Scholar 

  11. Freed WJ. Transplantation of tissue to the cerebral ventricules: methodological details and rate of graft survival. In: Bjorklund A, Steveni U (eds)Neural Grafting in the Mammalian CNS New York: Elsevier, 1985:31–40

    Google Scholar 

  12. Gash D, Sladek JR, Sladec CD. Functional development of grafted vasopressin neurons.Science 1980,210:1367–9

    Article  PubMed  CAS  Google Scholar 

  13. Gearhart J, Oster-Granite ML, Guth L. Histological changes after transection of the spinal cord of fetal and neonatal mice.Exp Neurol 1979,66:1–5

    Article  PubMed  CAS  Google Scholar 

  14. Guide for the care and use of laboratory animals. DHEW Publication No (NIH) 80-23. Office of Science and Health Report, DRR/NIH, Bethesda, MD 20205, USA.

  15. Jaeger CB, Lund RD. Transplantation of embryonic occipital cortex to the brain of newborn rats. An autoradiographic study of transplant histogenesis.Exp Brain Res 1980,40:265–72

    Article  PubMed  CAS  Google Scholar 

  16. Karnofsky R. Singlet oxygen production by biological systems.Chem Biol Interact 1989,70:1–28

    Article  Google Scholar 

  17. Krikorian JG, Guth L, Donati EJ. Origin of the connective tissue scar in the transected rat spinal cord.Exp Neurol 1981,72:698–707

    Article  PubMed  CAS  Google Scholar 

  18. Labbe R, Firl A Jr, Mufson EJ, Stein DG. Fetal brain transplants: reduction of cognitive deficits in rats with frontal cortex lesions.Science 1983,221:470–4

    Article  PubMed  CAS  Google Scholar 

  19. Le Gros Clark WE. Neuronal differentiation in implanted foetal cortical tissue.J Neurol Psychiatr 1940,3:203–72

    Article  Google Scholar 

  20. Lubart R, Malik Z, Rochkind S, Fisher T. A possible mechanism of low level laser living cell interaction.Laser Therapy 1990,2:65–8

    Google Scholar 

  21. Malik Z, Breitbart H. Cross-linking of hemoglobin and inhibition of globin synthesis in reticulocytes induced by photoactivated protoporphyrin.Acta Haematology 1980,64:304–9

    Article  CAS  Google Scholar 

  22. Matthews MA, Onge MR St, Faciane CL, Gelderd JB. Spinal cord transection: A quantitative analysis of elements of the connective tissue matrix formed within the site of lesion following administration of piromen, cytoxan, or trypsin.Neuropathol Exp Neurobiol 1978,5:161–80

    Google Scholar 

  23. Morris R. Thy-1 in developing nervous tissue.dev Neurosci 1985,7:133–60

    PubMed  CAS  Google Scholar 

  24. Nissan M, Rochkind S, Razon N, Bartal A. HeNe laser irradiation delivered transcutaneously: its effect on the sciatic nerve of rats.Laser Surg Med 1986,6:435–8

    Article  CAS  Google Scholar 

  25. Olson J. Laser action spectrum of reduced excitability in nerve cells.Brain Res 1981,204:436–40

    Article  PubMed  CAS  Google Scholar 

  26. Raisman G, Lawrence JM, Zhou CF, Lindsay RM. Some neuronal glial and vascular interactions which occur when developing hippocampal primordia are incorporated into adult host hippocampi. In: Bjorklund A, Steveni U (eds)Neural Grafting in the Mammalian CNS. New York: Elsevier, 1985:125–50

    Google Scholar 

  27. Reier PJ. Neural tissue grafts and repair of the injured spinal cord.Neuropathol Appl Neurobiol 1985,11:81–104

    PubMed  CAS  Google Scholar 

  28. Reier PJ, Bergman BS, Wujek JR. Intraspinal transplantation of embryonic spinal cord tissue in neonatal and adult rats.J Comp Neurol 1986,247:275–96

    Article  PubMed  CAS  Google Scholar 

  29. Richardson PM, Verge VMK. The induction of regenerative propensity in sensory neurons following peripheral axonal injury.J Neuroscytol 1986,15:585–94

    Article  CAS  Google Scholar 

  30. Rief AE. Transplantation of nerve tissue into brain.Appl Neurophysiol 1984,47:23–32

    Article  Google Scholar 

  31. Rochkind S, Barr-Nea L, Bartal A et al. New methods of treatment of severely injured sciatic nerve and spinal cord. An experimental study.Acta Neurochir 1988,43(Suppl):91–3

    CAS  Google Scholar 

  32. Rochkind S, Nissan M, Razon N et al. Electrophysiological effect of HeNe laser on normal and injured sciatic nerve in rat.Acta Neurochir 1986,83:125–30

    Article  CAS  Google Scholar 

  33. Rochkind S, Nissan M, Barr-Nea L et al. Response of peripheral nerve to HeNe laser: Experimental studies.Laser Surg Med 1987,7:441–3

    Article  CAS  Google Scholar 

  34. Rochkind S, Barr-Nea L, Razon N et al. Stimulatory effect of HeNe laser on injured sciatic nerves of rats.Neurosurgery 1987,30:843–7

    Article  Google Scholar 

  35. Rochkind S, Nissan M, Lubart R et al. The in-vivo nerve response to direct low-energy laser irradiation.Acta Neurochir 1988,94:74–7

    Article  CAS  Google Scholar 

  36. Rochkind S, Rousso M, Nissan M et al. Systemic effect of low-power laser irradiation on the peripheral and central nervous system, cutaneous wounds and burns.Laser Surg Med 1989,9:174–82

    Article  CAS  Google Scholar 

  37. Rochkind S, Nissan M, Lubart R. A single transcutaneous light irradiation to injured peripheral nerve: comparative study with five different wavelengths.Laser Med Sci 1989,4:252–63

    Article  Google Scholar 

  38. Rochkind S, Lubart R, Wolman Y et al. Central nervous system transplantation benefitted by low-level laser irradiation. In: Joffe SN, Atsumi K (eds)Laser Surgery: Advanced Characterization Therapeutics and System II. SPIE 1990,1200:301–12

  39. Rochkind S, Volger J, Barr-Nea L. Spinal cord response to laser treatment of injured peripheral nerve.Spine 1990,15:6–10

    Article  PubMed  CAS  Google Scholar 

  40. Sievers J, Kruger S, Hansen Ch, Berry M. Integration of fetal brain transplants into adult brain: Morphological Study of the host/graft interface. In: Bjorklund A, Steveni U (eds)Neural Grafting in the Mammalian CNS, New York: Elsevier, 1985:159–67

    Google Scholar 

  41. Sladek JR Jr, Gash DM. Morphological and functional properties of transplanted vasopressin neurons. In: Sladek JR jr, Gash DM (eds)Neural Transplants, Development and Function. New York: Plenum Press, 1984:243–82

    Google Scholar 

  42. Steveni U, Bjorklund A, Svendgaard NA. Transplantation of central and peripheral monoamine neurons to the adult rat brain: techniques and conditions for survival.Brain Res 1976,114:1–20

    Article  Google Scholar 

  43. Steveni U, Kromer LF, Cage FH, Bjorklund A. Solid neural grafts in intracerebral transplantation cavities. In: Bjorklund A, Steveni U (eds)Neural Grafting in the Mammalian CNS. New York: Elsevier, 1985:41–50

    Google Scholar 

  44. Sugar O, Gerard W. Spinal cord regeneration in the rat.J Neurophysiol 1940,3:1–19

    Google Scholar 

  45. Varon S, Somjen GG. Neuron-glia interactions.Neurosciences Res Prog Bull 1979,17:9–239

    Google Scholar 

  46. Willard M, Skene JHP.Repair and regeneration of the nervous system Nicholls JG (ed). New York: Springer Verlag, 1982:71–89

    Google Scholar 

  47. Wrathall J, Rigamonti DD, Braford MR, Kao CC. Reconstruction of the contused cat spinal cord by the delayed nerve graft technique and cultured peripheral non-neuronal cells.Acta Neuropathol 1982,57:59–69

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rochkind, S. Central nervous system transplantation benefitted by low-power laser irradiation. Laser Med Sci 7, 143–151 (1992). https://doi.org/10.1007/BF02594064

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02594064

Key words

Navigation