Skip to main content
Log in

Stochasticity in membrane-localized “ligand-receptor-G protein” binding: Consequences for leukocyte movement behavior

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The signal that governs the chemotactic response of mammalian white blood cells and tissue cells arises from membrane-localized binding events involving chemotactic factor ligands and receptors and G proteins. Fluctuations in this signal have been traditionally attributed to significant “noise” in receptor-ligand binding owing to a limited number of receptors. This paper examines the validity and consequences of a new hypothesis which states that the noise could be associated with a limited number of G proteins as well as receptors. This work characterizes via stochastic analysis and simulation the effects of the relative sizes of G protein and receptor populations on the variance of fluctuations of receptor states and consequently on the directional persistence behavior of cells in uniform chemotactic factor concentrations under the assumptions of the model used to link a G protein-mediated receptor signal to cell turning. Our results suggest that there may exist an optimal number of G proteins through which chemotactic receptors can signal that maximizes cell orientation accuracy in a chemotactic factor gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berg, H. C., and E. M. Purcell. Physics of chemoreception.Biophys. J. 20:193–211, 1977.

    Article  PubMed  CAS  Google Scholar 

  2. Becker, E. L., J. C. Kermode, P. H. Naccache, R. Yassin, M. L. Marsh, J. L. Munoz, and R. I. Sha'afin. The inhibition of neutrophil granule enzyme secretion and chemotaxis by pertussis toxin.J. Cell. Biol. 100:1641–1650, 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Cumming, I. G. Derivation of the moments of a continuous stochastic system.Int. J. Control 5:85–90, 1967.

    Google Scholar 

  4. Fay, S. P., R. G. Posner, W. N. Swann, and L. A. Sklar. Real-time analysis of the assembly of ligand, receptor, and G protein by quantitative fluorescence flow cytometry.Biochemistry 30:5066–5075, 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Gardiner, C. W. Handbook of Stochastic Methods. New York: Springer-Verlag, 1985.

    Google Scholar 

  6. Higashijima, T., K. M. Ferguson, P. Sternweis, M. Smigel, and A. Gilman. Effects of Mg2+ and the βγ-subunit complex on the interactions of Guanine nucleotides with G proteins.J. Biol. Chem. 262:762–766, 1987.

    PubMed  CAS  Google Scholar 

  7. Milligan, G., F. M. Mitchell, I. Mullaney, S. J. McClue, and F. R. McKenzie. The role and specificity of guanine nucleotide binding proteins in receptor-effector coupling.Symp. Soc. Exp. Biol. 44:157–172, 1990.

    PubMed  CAS  Google Scholar 

  8. Moghe, P. V. Phenomenological and mechanistic analyses of leukocyte chemotaxis. PhD. Thesis, University of Minnesota, 1993.

  9. Moghe, P. V., and R. T. Tranquillo. Stochastic model of receptor dynamics in leukocyte chemosensory movement.Bull. Math. Biol. 56:1041–1093, 1994.

    PubMed  CAS  Google Scholar 

  10. Mueller, H., R. Weingarten, L. Ransnas, G. M. Bokoch, and L. A. Sklar. Differential amplification of antagonistic receptor pathways in neutrophils.J. Biol. Chem. 266: 12939–12943, 1991.

    PubMed  CAS  Google Scholar 

  11. Neubig, R. R., and L. A. Sklar. Sub-second modulation of formyl peptide-linked guanine nucleotide-binding proteins by guanosine-5′-o-(3-thio) triphosphate in permeabilized neutrophils.Mol. Pharmacol. 43:734–740, 1993.

    PubMed  CAS  Google Scholar 

  12. Omann, G. M., R. A. Allen, G. M. Bokoch, R. G. Painter, A. E. Traynor, and L. A. Sklar. Signal transduction and cytoskeletal activation in the neutrophil.Physiol. Rev. 67:285–321, 1987.

    PubMed  CAS  Google Scholar 

  13. Sklar, L. A. Real-time analysis of ligand-receptor dynamics and binding pocket of structure of the formyl peptide receptor. In: Cellular and Molecular Mechanisms of Inflammation, Vol. 3. Academic Press, Inc., pp. 1–23.

  14. Sklar, L. A., and G. M. Omann. Kinetics and amplification in neutrophil activation and adaptation.Sem. Cell Biol. 1: 115–124, 1990.

    CAS  Google Scholar 

  15. Stryer, L., and H. R. Bourne. G proteins: A family of signal transducers.Ann. Rev. Cell Biol. 2:391–419, 1986.

    PubMed  CAS  Google Scholar 

  16. Thomsen, W. J., and R. R. Neubig. Rapid kinetics of α2-adrenergic inhibition of adenylate cyclase: evidence of a distal rate-limiting step.Biochemistry 28:8778–8786, 1989.

    Article  PubMed  CAS  Google Scholar 

  17. Tranquillo, R. T. Models of chemical gradient sensing by cells. In: Biological Motion, edited by W. Alt and G. Hoffmann. Berlin: Springer-Verlag, 1990, pp. 415–441.

    Google Scholar 

  18. Tranquillo, R. T. and W. Alt. Stochastic model of receptor-mediated cytomechanics and dynamic morphology of leukocytes.J. Math Biol. (submitted).

  19. Tranquillo, R. T., and D. A. Lauffenburger. Stochastic model of leukocyte chemosensory movement.J. Math. Biol. 25:229–262, 1987.

    Article  PubMed  CAS  Google Scholar 

  20. van Kampen, N. G. Stochastic Processes in Physics and Chemistry. New York: North Holland Publishing Company, 1981.

    Google Scholar 

  21. Zigmond, S. H. Recent quantitative studies of actin filament turnover during cell locomotion.Cell Motil. Cytoskel. 25(4):309–316, 1993.

    Article  CAS  Google Scholar 

  22. Cassimeris, L., and S. H. Zigmond. Chemoattractant stimulation of polymorphonuclear leucocyte locomotion.Sem. Cell Biol. 1:125–134, 1990.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghe, P.V., Tranquillo, R.T. Stochasticity in membrane-localized “ligand-receptor-G protein” binding: Consequences for leukocyte movement behavior. Ann Biomed Eng 23, 257–267 (1995). https://doi.org/10.1007/BF02584427

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584427

Keywords

Navigation