Skip to main content
Log in

Regulation of PaCO2 during rest and exercise: A modeling study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A nonlinear mathematical model of the CO2 control system was used to examine a number of issues concerning the regulation of PaCO2 during rest and exercise. To gain insight to the regulatory properties of the respiratory system, the open loop gain (Gl) and closed loop sensitivities Si=ξPaCO2/ξPiCO2 and\(Sv = \partial PaCO_2 /\partial \dot Vco_2\) were calculated. Gl indicates the ability of a control system to regulate the controlled variable, PaCO2 in the model. Si and Sv represent the change in PaCO2 to unit changes in PiCO2 and\(\dot Vco_2\), respectively. Model predications were obtained for rest and various intensities of exercise for the following challenges to the respiratory system: (a) CO2 inhalation, (b) i.v. CO2 loading, (c) application of an external dead space, and (d) a shift in the resting operating point. Increasing exercise intensity produced a substantial decrease in Gl and increase in Si consistent with the hypothesis that exercise degrades the ability of the respiratory system to regulate PaCO2. However, Sv decreased indicating that the respiratory system would actually be better able to regulate PaCO2 if there were fluctuations in\(\dot Vco_2\). Thus, Gl does not completely describe the regulatory characteristics of the respiratory control system. It is demonstrated that the regulatory characteristics of the respiratory system as described by Gl, Si, and Sv are complex and depend on the nature of the challenge. Techniques for systematically describing the regulatory properties of the CO2 control system are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, F.M.; Tallman, R.D.; Grodins, F.S. Role of\(\dot VCO_2\) in control of breathing of awake exercising dogs. J. Appl. Physiol. 56:1335–1337; 1984.

    PubMed  CAS  Google Scholar 

  2. Bennett, F.M.; Fordyce, W.E. Characteristics of the ventilatory exercise stimulus. Respir. Physiol. 59:55–63; 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Bennett, F.M.; Fordyce, W.E. Gain of the ventilatory exercise stimulus: Definition and meaning. J. Appl. Physiol. 65:2011–2017; 1988.

    PubMed  CAS  Google Scholar 

  4. Clark, J.M.; Sinclair, R.D.; Lenox, J.B. Chemical and nonchemical components of ventilation during hypercapnic exercise in man. J. Appl. Physiol. 48:1065–1076; 1980.

    PubMed  CAS  Google Scholar 

  5. Coggan, A.R.; Coyle, E.F. Effect of carbohydrate feeding during high-intensity exercise. J. Appl. Physiol. 65:1703–1709; 1988.

    PubMed  CAS  Google Scholar 

  6. Dempsey, J.A.; Vidruk, E.H.; Mitchell, G.S. Pulmonary control systems in exercise. Federation Proc. 44:2260–2270; 1985.

    CAS  Google Scholar 

  7. Fordyce, W.E.; Grodins, F.S. Ventilatory response to intravenous and airway CO2 administration in anesthetized dogs. J. Appl. Physiol. 48:337–346; 1980.

    PubMed  CAS  Google Scholar 

  8. Fordyce, W.E.; Kanter, R.K. Arterial-end tidal PCO2 equilibrium in the cat during acute hypercapnia. Resp. Physiol. 73:257–272; 1988.

    Article  CAS  Google Scholar 

  9. Gray, J.S.; Grodins, F.S.; Carter, E.T. Alveolar and total ventilation and the dead space problem. J. Appl. Physiol. 9:307–320; 1956.

    PubMed  Google Scholar 

  10. Greco, E.C.; Fordyce, W.E.; Gonzalez, F.; Reischl, P.; Grodins, F.S. Respiratory responses to intravenous and intrapulmonary CO2 in awake dogs. J. Appl. Physiol. 45: 109–114; 1978.

    PubMed  CAS  Google Scholar 

  11. Grodins, F.S. Analysis of factors concerned in regulation of breathing in exercise. Physiol. Rev. 30:220–239; 1950.

    PubMed  CAS  Google Scholar 

  12. Grodins, F.S. Control theory and biological systems. New York: Columbia University Press; 1963.

    Google Scholar 

  13. Grodins, F.S.; Gray, J.S.; Schroeder, K.R.; Norins, A.L.; Jones, R.W. Respiratory responses to CO2 inhalation. A theoretical study of a non-linear biological regulator. J. Appl. Physiol. 7:283–308; 1954.

    PubMed  CAS  Google Scholar 

  14. Honda, Y.; Hayashi, F.; Yoshida, A.; Ohyabu, Y.; Nishibayashi, Y.; Kimura, Y. Overall “gain” of the respiratory control system in normoxic humans awake and asleep. J. Appl. Physiol. 55:1530–1535, 1983.

    PubMed  CAS  Google Scholar 

  15. Loescheke, H.H. The effectiveness of the control of pH in the extracellular fluid of the brain by the respiratory control system. Pflugers Arch. 341:43–50; 1974.

    Article  Google Scholar 

  16. Masuyama, H.; Honda, Y. Differences in overall “gain” of CO2-feedback system between dead space and CO2 ventilation in man. Bull. Eur. Physiopathol. Respir. 20:501–506; 1984.

    PubMed  CAS  Google Scholar 

  17. Milhorn, Jr., H.T. The application of control theory to physiological systems. Philadelphia: Saunders; 1966.

    Google Scholar 

  18. Milhorn, H.T.; Guyton, A.C. An analog computer analysis of Cheynes-Stokes breathing. J. Appl. Physiol. 20:328–333; 1965.

    Google Scholar 

  19. Mitchell, G.S.; Smith, C.A.; Dempsey, J.A. Changes in the\(\dot VI - \dot VCO_2\) relationship during exercise in goats: role of carotid bodies. J. Appl. Physiol. 57:1894–1900; 1984.

    PubMed  CAS  Google Scholar 

  20. Mitchell, G.S. Ventilatory control during exercise with increasing respiratory dead space in goats. J. Appl. Physiol. 69:718–727; 1990.

    PubMed  CAS  Google Scholar 

  21. Oren, A.; Wasserman, K.; Davis, J.A.; Whipp, B.J. Effect of CO2 set point on ventilatory response to exercise. J. Appl. Physiol. 51:185–189; 1981.

    PubMed  CAS  Google Scholar 

  22. Pearce, D.H.; Milhorn, Jr., H.T. Dynamics and steady-state respiratory response to bicycle exercise. J. Appl. Physiol. 42:959–967; 1977.

    PubMed  CAS  Google Scholar 

  23. Riggs, D.S. Control theory and physiological feedback mechanisms. Huntington, NY: R.E. Krieger Publishing Co.; 1976.

    Google Scholar 

  24. Stegemann, J.; Seez, P.; Kremer, W.; Boning, D. A mathematical model of the ventilatory control system to carbon dioxide with special reference to athletes and nonathletes. Pflugers Arch. 356:223–236; 1975.

    Article  PubMed  CAS  Google Scholar 

  25. Stremel, R.W.; Huntsman, D.J.; Casaburi, R.; Whipp, B.J.; Wasserman, K. Control of ventilation during intravenous CO2 loading in the awake dog. J. Appl. Physiol. 44:311–316; 1978.

    PubMed  CAS  Google Scholar 

  26. Ward, S.A.; Whipp, B.J. Ventilatory control during exercise with increased external dead space. J. Appl. Physiol. 48:225–231; 1980.

    PubMed  CAS  Google Scholar 

  27. Wasserman, K.; Whipp, B.J.; Casaburi, R. Respiratory control during exercise. In: Handbook of physiology. The respiratory system. Control of breathing. Sect. 3, vol II, part 2, chapter 17. Bethesda, MD: Am. Physiol. Soc., 1986: pp. 595–620.

    Google Scholar 

  28. Takano, N.; Sakai, A.; Iida, Y. Analysis of alveolar PCO2 during the menstrual cycle. Pflugers Arch. 390:56–62, 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, F.M., Fordyce, W.E. Regulation of PaCO2 during rest and exercise: A modeling study. Ann Biomed Eng 21, 545–555 (1993). https://doi.org/10.1007/BF02584337

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584337

Keywords

Navigation