Skip to main content
Log in

Modeling and predicting heart rate dynamics across a broad range of transient exercise intensities during cycling

  • Original Article
  • Published:
Sports Engineering Aims and scope Submit manuscript

Abstract

Prior studies have investigated heart rate dynamics from a variety of perspectives, but are often inadequate for predicting heart rate responses across a broad range of transient exercise intensities. The aim of this study was to develop a nonlinear model to describe the heart rate response of an individual during cycling and to investigate whether heart rate is more accurately predicted by a combination of power output and cadence than by power output alone. The proposed model can account for the transient fluctuations of an individual’s heart rate while they participate in exercise that varies in intensity. The participants for this study each performed a fifty minute bout of cycling on an electric-braked cycle ergometer in the laboratory. The testing protocol for the cycling bout was designed to challenge the predictive capabilities of the model and the participants therefore abruptly changed their power outputs and cadences throughout the tests, which resulted in significant transient fluctuations in their heart rate responses. Due to the nonlinear nature of the proposed heart rate model, a heuristic algorithm was developed to perform the parameter estimation. The model predictions for heart rate matched very well with the experimental heart rate responses for each of the participants, especially when considering the challenges inherent to predicting abrupt transient behavior in the heart rate response. Model comparisons also indicated that heart rate is more accurately predicted by a combination of power output and cadence than by power output alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Johnson AT (2007) Biomechanics and exercise physiology: quantitative modeling. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Brooks GA, Fahey TD, Baldwin K (2005) Exercise physiology: human bioenergetics and its applications. McGraw-Hil, Boston

  3. Clarke DC, Skiba PF (2013) Rationale and resources for teaching the mathematical modeling of athletic training and performance. Adv Physiol Educ 37(2):134–152. doi:10.1152/advan.00078.2011

    Article  Google Scholar 

  4. Daniels J (2013) Daniels’ running formula. Human Kinetics, Champaign

    Google Scholar 

  5. Battaglini CL, Mills RC, Phillips BL, Lee JT, Story CE, Nascimento MGB, Hackney AC (2014) Twenty-five years of research on the effects of exercise training in breast cancer survivors: a systematic review of the literature. World J Clin Oncol 5(2):177–190. doi:10.5306/wjco.v5.i2.177

    Article  Google Scholar 

  6. Wood WA, Deal AM, Reeve BB, Abernethy AP, Basch E, Mitchell SA, Shatten C, Kim YH, Whitley J, Serody JS, Shea T, Battaglini C (2013) Cardiopulmonary fitness in patients undergoing hematopoietic SCT: a pilot study. Bone Marrow Transpl 48(10):1342–1349. doi:10.1038/bmt.2013.58

    Article  Google Scholar 

  7. Acharya R, Kumar A, Bhat PS, Lim CM, Iyengar SS, Kannathal N, Krishnan SM (2004) Classification of cardiac abnormalities using heart rate signals. Med Biol Eng Comput 42(3):288–293. doi:10.1007/BF02344702

    Article  Google Scholar 

  8. Achten J, Jeukendrup AE (2003) Heart rate monitoring: applications and limitations. Sports Med 33(7):517–538. doi:10.2165/00007256-200333070-00004

    Article  Google Scholar 

  9. Flouris AD, Poirier MP, Bravi A, Wright-Beatty HE, Henry C, Seely AJ, Kenny GP (2014) Changes in heart rate variability during the induction and decay of heat acclimation. Eur J Appl Physiol 114(10):2119–2128. doi:10.1007/s00421-014-2935-5

    Article  Google Scholar 

  10. Givoni B, Goldman RF (1973) Predicting effects of heat acclimatization on heart rate and rectal temperature. J Appl Physiol 35(6):875–879

    Google Scholar 

  11. Givoni B, Goldman RF (1973) Predicting heart rate response to work, environment, and clothing. J Appl Physiol 34(2):201–204

    Google Scholar 

  12. Robergs RA, Landwehr R (2002) The surprising history of the HR max=220-age equation. J Exerc Physiol Online 5(2):1–10

    Google Scholar 

  13. Tanaka H, Monahan KD, Seals DR (2001) Age-predicted maximal heart rate revisited. J Am Coll Cardiol 37(1):153–136. doi:10.1016/S0735-1097(00)01054-8

    Article  Google Scholar 

  14. Londeree BR, Moeschberger ML (1982) Effect of age and other factors on maximal heart rate. Res Quarter Exerc Sport 53(4):297–304. doi:10.1080/02701367.1982.10605252

    Article  Google Scholar 

  15. Garcia-Ramos A, Feriche B, Calderon C, Iglesias X, Barrero A, Chaverri D, Schuller T, Rodriguez FA (2015) Training load quantification in elite swimmers using a modified version of the training impulse method. Eur J Sport Sci 15(2):85–93. doi:10.1080/17461391.2014.922621

    Article  Google Scholar 

  16. Taha T, Thomas SG (2003) Systems modelling of the relationship between training and performance. Sports Med 33(14):1061–1073. doi:10.2165/00007256-200333140-00003

    Article  Google Scholar 

  17. Calvert TW, Banister EW, Savage MV, Bach T (1976) A systems model of the effect of training on physical performance. IEEE Trans Syst Man Cybern 6(2):94–102. doi:10.1109/TSMC.1976.5409179

    Article  Google Scholar 

  18. Haddad A, Zhang Y, Su S, Celler B, Nguyen H (2014) Modelling and regulating of cardio-respiratory response for the enhancement of interval training. BioMed Eng OnLine 13:9. doi:10.1186/1475-925X-13-9

    Article  Google Scholar 

  19. Stupnicki R, Gabrys T, Szmatlan-Gabrys U, Tomaszewski P (2010) Fitting a single-phase model to the post-exercise changes in heart rate and oxygen uptake. Physiol Res 59(3):357–362

    Google Scholar 

  20. Su SW, Chen W, Liu D, Fang Y, Kuang W, Yu X, Guo T, Celler BG, Nguyen HT (2010) Dynamic modelling of heart rate response under different exercise intensity. Open Med Inform J 4:81–85. doi:10.2174/1874431101004020081

    Article  Google Scholar 

  21. Su SW, Wang L, Celler BG, Savkin AV, Guo Y (2007) Identification and control for heart rate regulation during treadmill exercise. IEEE Trans Biomed Eng 54(7):1238–1246. doi:10.1109/TBME.2007.890738

    Article  Google Scholar 

  22. Mavrommataki E, Bogdanis GC, Kaloupsis S, Maridaki M (2006) Recovery of power output and heart rate kinetics during repeated bouts of rowing exercise with different rest intervals. J Sports Sci Med 5(1):115–122

    Google Scholar 

  23. Bearden SE, Moffatt RJ (2001) \(\dot{V} {O}_2\) and heart rate kinetics in cycling: transitions from an elevated baseline. J Appl Physiol 90(6):2081–2087

    Google Scholar 

  24. Lefever J, Berckmans D, Aerts J (2014) Time-variant modelling of heart rate responses to exercise intensity during road cycling. Eur J Sport Sci 14(S1):S406–S412. doi:10.1080/17461391.2012.708791

    Article  Google Scholar 

  25. Le A, Jaitner T, Tobias F, Litz L (2009) A dynamic heart rate prediction model for training optimization in cycling (P83). Eng Sport 7(1):425–433. doi:10.1007/978-2-287-99054-0_50

    Google Scholar 

  26. Zakynthinaki MS (2015) Modelling heart rate kinetics. PLoS One 10(4):e0118263. doi:10.1371/journal.pone.0118263

    Article  Google Scholar 

  27. Stirling JR, Zakynthinaki MS, Refoyo I, Sampedro J (2008) A model of heart rate kinetics in response to exercise. J Nonlinear Math Phys 15(3):426–436. doi:10.2991/jnmp.2008.15.s3.41

    Article  MathSciNet  Google Scholar 

  28. Stirling JR, Zakynthinaki MS, Billat V (2008) Modeling and analysis of the effect of training on \(\dot{V} {O}_2\) kinetics and anaerobic capacity. Bull Math Biol 70(5):1348–1370. doi:10.1007/s11538-008-9302-9

    Article  MathSciNet  MATH  Google Scholar 

  29. Zakynthinaki MS, Stirling JR (2008) Stochastic optimization for the calculation of the time dependency of the physiological demand during exercise and recovery. Comput Phys Commun 179(12):888–894. doi:10.1016/j.cpc.2008.07.012

    Article  MathSciNet  MATH  Google Scholar 

  30. Zakynthinaki MS, Stirling JR (2007) Stochastic optimization for modeling physiological time series: application to the heart rate response to exercise. Comput Phys Commun 176(2):98–108. doi:10.1016/j.cpc.2006.08.005

    Article  MATH  Google Scholar 

  31. Stirling JR, Zakynthinaki MS, Saltin B (2005) A model of oxygen uptake kinetics in response to exercise: including a means of calculating oxygen demand/deficit/debt. Bull Math Biol 67(5):989–1015. doi:10.1016/j.bulm.2004.12.005

    Article  MathSciNet  MATH  Google Scholar 

  32. Mazzoleni MJ, Battaglini CL, Mann BP (2015) Modeling heart rate dynamics in response to changes in exercise intensity. In: Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers in Engineering Conference, DETC2015–47587

  33. Mazzoleni MJ, Battaglini CL, Mann BP (2015) A predictive heart rate model for changes in exercise intensity during cycling. Med Sci Sports Exerc 47(5S):S121

    Google Scholar 

  34. Allen H, Coggan A (2010) Training and racing with a power meter. VeloPress, Boulder

    Google Scholar 

  35. Strogatz SH (2001) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview Press, Cambridge

    Google Scholar 

  36. Mann BP, Khasawneh FA, Fales R (2011) Using information to generate derivative coordinates from noisy time series. Commun Nonlinear Sci Numer Simul 16(8):2999–3004. doi:10.1016/j.cnsns.2010.11.011

    Article  MATH  Google Scholar 

  37. Abarbanel HDI (1996) Analysis of observed chaotic data. Springer, New York

    Book  MATH  Google Scholar 

  38. Rao SS (2009) Engineering optimization: theory and practice. Wiley, Hoboken

    Book  Google Scholar 

  39. Miller BL, Goldberg DE (1996) Genetic Algorithms, selection schemes, and the varying effects of noise. Evolut Comput 4(2):113–131. doi:10.1162/evco.1996.4.2.113

    Article  Google Scholar 

  40. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison Wesley, Boston

    MATH  Google Scholar 

  41. de Winter JCF (2013) Using the student's t-test with extremely small sample sizes. Pract Assess Res Evaluat 18(10):1–12

    Google Scholar 

  42. Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, Hillsdale

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Mazzoleni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The experimental protocol for this study was approved by the locally appointed ethics committee, and informed written consent was obtained from each participant.

Additional information

The authors would like to acknowledge the financial support provided by the National Aeronautics and Space Administration and the North Carolina Space Grant Consortium.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzoleni, M.J., Battaglini, C.L., Martin, K.J. et al. Modeling and predicting heart rate dynamics across a broad range of transient exercise intensities during cycling. Sports Eng 19, 117–127 (2016). https://doi.org/10.1007/s12283-015-0193-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12283-015-0193-3

Keywords

Navigation