Skip to main content
Log in

Computer simulation of metabolism in palmitate-perfused rat heart. I. Palmitate oxidation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A computer model of the fatty acid oxidation pathway in perfused rat heart was constructed. It includes uptake, activation, and β-oxidation of fatty acids, triglyceride synthesis and hydrolysis, and carnitine-dependent transport of acyl groups across the mitochondrial membrane under pseudosteady state conditions. Fatty acid utilization may be limited by β-oxidation in hypoxia or ischemia but probably not in aerobic conditions. Nonesterified fatty acids bound to proteins are found to be metabolically available. The model predicts that stearate, but not palmitate, can support the highest observed respiration rate for perfused rat heart without supplementation by other substrates. Fatty acids are preferentially oxidized rather than being stored as triglycerides because the cystosolic acyl CoA level is lower than the Km for triglyceride synthesis. It is suggested that feedback inhibition of triglyceride lipase regulates utilization of triglycerides as fuel in aerobic hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achs, M.J. and D. Garfinkel. Computer simulation of rat heart metabolism after adding glucose to the perfusate.Am. J. Physiol. 232:R175-R184, 1977.

    PubMed  CAS  Google Scholar 

  2. Barrie, S.E. and P. Harris. Effects of chronic hypoxia and dietary restriction on myocardial enzyme activities.Am. J. Physiol. 231:1308–1313, 1976.

    PubMed  CAS  Google Scholar 

  3. Barman, T.E. In:Enzyme Handbook. New York: Springer-Verlag, 1969, vol. 1, p. 55.

    Google Scholar 

  4. Bar-Tana, J., G. Rose, and B. Shapiro. The purification and properties of microsomal palmitoyl-coenzyme A synthetase.Biochem. J. 122:353–362, 1971.

    PubMed  CAS  Google Scholar 

  5. Bar-Tana, J., G. Rose, and B. Shapiro. Palmitoyl-coenzyme A synthetase. Mechanism of reaction.Biochem. J. 131:199–209, 1973.

    PubMed  CAS  Google Scholar 

  6. Bar-Tana, J., G. Rose, and B. Shapiro. Long chain fatty acyl-CoA synthetase from rat liver microsomes.Methods Enzymol. 35:117–122, 1975.

    PubMed  CAS  Google Scholar 

  7. Beinert, H. Acyl coenzyme A dehydrogenases. In:The Enzymes, 2nd edition, edited by P.D. Boyer, H. Lardy, and K. Myrback. New York: Academic Press, 1963, vol. 7, pp. 447–466.

    Google Scholar 

  8. Bremer, J. and K.R. Norum. The mechanism of substrate inhibition of palmityl coenzyme A: carnitine palmityltransferase by palmityl coenzyme A.J. Biol. Chem. 242:1744–1748, 1967.

    PubMed  CAS  Google Scholar 

  9. Brosnan, J.T., B. Kopec, and I.B. Fritz. The localization of carnitine palmitoyl transferase on the inner membrane of bovine liver mitochondria.J. Biol. Chem. 248:4075–4082, 1973.

    PubMed  CAS  Google Scholar 

  10. Clarke, P.R.H. and L.L. Bieber. Effect of micelles on the kinetics of purified beef heart mitochondrial carnitine palmitoyltransferase.J. Biol. Chem. 256:9869–9873, 1981.

    PubMed  CAS  Google Scholar 

  11. Coleman, R.A., B.C. Reed, J.C. Mackall, A.K. Student, M.D. Lane, and R.M. Bell. Selective changes in microsomal enzymes of triacylglycerol, phosphatidyl choline, and phosphatidylethanolamine biosynthesis during differentiation of 3T3-L1 preadipocytes.J. Biol. Chem. 253:7256–7261, 1978.

    PubMed  CAS  Google Scholar 

  12. Corbin, J.E., E.M. Reimann, D.A. Walsh, and E.G. Krebs. Activation of adipose tissue lipase by skeletal muscle cyclic adenosine 3′,5′-monophosphate-stimulated protein kinase.J. Biol. Chem. 245:4849–4851, 1970.

    PubMed  CAS  Google Scholar 

  13. Crass, M.F. Exogenous substrate effects on endogenous lipid metabolism in the working rat heart.Biochim. Biophys. Acta 280:71–81, 1972.

    PubMed  CAS  Google Scholar 

  14. Edwards, Y.H., J.F.A. Chase, M.R. Edwards, and P.K. Tubbs. Carnitine acetyltransferase: The question of multiple forms.Eur. J. Biochem. 46:209–215, 1974.

    Article  PubMed  CAS  Google Scholar 

  15. Fong, J.C. and H. Schulz. Purification and properties of pig heart crotonase and the presence of short chain and long chain enoyl coenzyme A hydratase in pig and guinea pig tissues.J. Biol. Chem. 252:542–547, 1977.

    PubMed  CAS  Google Scholar 

  16. Fong, J.C. and H. Schulz. On the rate-determining step of fatty acid oxidation in heart. Inhibition of fatty acid oxidation by 4-pentenoic acid.J. Biol. Chem. 253:6917–6922, 1978.

    PubMed  CAS  Google Scholar 

  17. Fritz, I.B. and S.K. Schultz. Carnitine acetyltransferase. II. Inhibition by carnitine analogs and by sulfhydryl reagents.J. Biol. Chem. 240:2188–2192, 1965.

    PubMed  CAS  Google Scholar 

  18. Fritz, I.B., S.K. Schultz, and P.A. Srere. Properties of partially purified carnitine acetyltransferase.J. Biol. Chem. 238:2509–2517, 1963.

    PubMed  CAS  Google Scholar 

  19. Garfinkel, D., M.C. Kohn, M.J. Achs, J. Phifer, and G.C. Roman. Construction of more reliable complex metabolic models without repeated solution of their constituent differential equations.Math. Comput. Simulat. 20:18–27, 1978.

    Article  Google Scholar 

  20. Gehring, U. and F. Lynen, Thiolase. In:The Enzymes, 3rd edition, edited by P.D. Boyer. New York: Academic Press, 1972, vol. 7, pp. 391–405.

    Google Scholar 

  21. Gehring, U., C. Riepertinger and F. Lynen. Reinigung und Kristallisation der Thiolase, Untersuchungen zum Wirkungsmechanismus.Eur. J. Biochem. 6:264–280, 1968.

    Article  PubMed  CAS  Google Scholar 

  22. Hall, C.L. and H. Kamin. The purification and some properties of electron transfer flavoprotein and general fatty acyl coenzyme A dehydrogenase from pig liver mitochondria.J. Biol. Chem. 250:3476–3486. 1975.

    PubMed  CAS  Google Scholar 

  23. Heller, R.A. and D. Steinberg. Partial glyceridase activity of a protein-kinase activatable triglyceride lipase from rat adipose tissue.Biochim. Biophys. Acta 270:65–73, 1972.

    PubMed  CAS  Google Scholar 

  24. Huttunen, J.K., A.A. Aquino, and D. Steinberg. A purified triglyceride lipase, lipoprotein in nature, from rat adipose tissue.Biochim. Biophys. Acta 242:295–298, 1970.

    Google Scholar 

  25. Idell-Wenger, J.A., L.W. Grotyohann, and J.R. Neely. Coenzyme A and carnitine distribution in normal and ischemic hearts.J. Biol. Chem. 253:4310–4318, 1978.

    PubMed  CAS  Google Scholar 

  26. Illingworth, J.A., W.C.L. Ford, K. Kobayashi, and J.R. Williamson. Regulation of myocardial energy metabolism.Adv. Stud. Card. Struct. Metab. 8:271–289, 1975.

    CAS  Google Scholar 

  27. Jamdar, S.C. Glycerolipid biosynthesis in rat adipose tissue. Effect of polyamines on triglyceride synthesis.Arch. Biochem. Biophys. 182:723–731, 1977.

    Article  PubMed  CAS  Google Scholar 

  28. Khoo, J.C., D. Steinberg, J.J. Huang, and P.R. Vagelos. Triglyceride, diglyceride, monoglyceride, and cholesterol ester hydrolases in chicken adipose tissue activated by adenosine 3′:4′-monophosphate-dependent protein kinase. Chromatographic resolution and immunochemical differentiation from lipoprotein lipase.J. Biol. Chem. 251:2882–2890, 1976.

    PubMed  CAS  Google Scholar 

  29. Kohn, M.C., M.J. Achs, and D. Garfinkel. Computer simulation of metabolism in pyruvate-perfused rat heart. I. Model construction.Am. J. Physiol. 237:R153-R158, 1979.

    PubMed  CAS  Google Scholar 

  30. Kohn, M.C. and D. Garfinkel. Computer simulation of ischemic rat heart purine metabolism. I. Model construction.Am. J. Physiol. 232:H386-H393, 1977.

    PubMed  CAS  Google Scholar 

  31. Kohn, M.C. and D. Garfinkel. Computer simulation of metabolism in palmitate-perfused rat heart. II. Behavior of complete model.Ann. Biomed. Eng. 11:361–384, 1983.

    Article  PubMed  CAS  Google Scholar 

  32. Kohn, M.C., L.E. Menten, and D. Garfinkel. A convenient computer program for fitting enzymatic rate laws to steady-state data.Comput. Biomed. Res. 12:461–469, 1979.

    Article  PubMed  CAS  Google Scholar 

  33. Kopec, B. and I.B. Fritz. Properties of a purified carnitine palmitoyl-transferase and evidence for existence of other carnitine acyltransferases.Can. J. Biochem. 49:941–948, 1971.

    Article  PubMed  CAS  Google Scholar 

  34. Kopec, B., and I.B. Fritz. Comparison of properties of carnitine palmitoyltransferase I with those of carnitine palmitoyltransferases.J. Biol. Chem. 248:4069–4074, 1973.

    PubMed  CAS  Google Scholar 

  35. Lamb, R.G. and H.J. Fallon. The formation of monoacylglycerophosphate from sn-glycerol 3-phosphate by a rat liver particulate preparation.J. Biol. Chem. 245:2075–3083, 1970.

    Google Scholar 

  36. Liu, M.S. and J.J. Spitzer. Oxidation of palmitate and lactate by beating myocytes isolated from adult dog heart.J. Mol. Cell. Cardiol. 10:415–426, 1978.

    Article  PubMed  CAS  Google Scholar 

  37. Markwell, M.A.K., N.E. Tolbert, and L.L. Bieber. Comparison of the carnitine acyltransferase activities from rat liver peroxisomes and microsomes.Arch. Biochem. Biophys. 176:479–488, 1976.

    Article  CAS  Google Scholar 

  38. Marquis, N.R. and I.B. Fritz. The distribution of carnitine, acetylcarnitine, and carnitine acetyltransferase in rat tissues.J. Biol. Chem. 240:2193–2196, 1965.

    PubMed  CAS  Google Scholar 

  39. Menten, L.E., M.C. Kohn, and D. Garfinkel. A convenient computer program for estimation of enzyme and metabolite concentrations in multienzyme systems.Computers Biomed. Res. 14:91–102, 1981.

    Article  CAS  Google Scholar 

  40. Middleton, B. The oxoacyl-coenzyme A thiolase of animal tissues.Biochem. J. 132:717–730, 1973.

    PubMed  CAS  Google Scholar 

  41. Middleton, B. Kinetic mechanism and properties of cytoplasmic acetacetylcoenzyme A thiolase from rat liver.Biochem. J. 139:109–121, 1974.

    PubMed  CAS  Google Scholar 

  42. Monroy, G., H.C. Kelker, and M.E. Pullman. Partial purification and properties of an acyl coenzyme A: sn-glycerol 3-phosphate acyltransferase from rat liver mitochondria.J. Biol. Chem. 258:2845–2852, 1973.

    Google Scholar 

  43. Murthy, V.K. and J.C. Shipp. Inhibition of triacylglycerol lipolysis in control and diabetic hearts by palmitate, acetate, and acetyl carnitine. Abstract.Fed. Proc. Fed. Am. Soc. Exp. Biol. 41:970, 1982.

    Google Scholar 

  44. Neely, J.R., M.J. Rovetto, and J.F. Oram. Myocardial utilization of carbohydrate and lipids.Prog. Cardiovasc. Diseases 15:289–329, 1972.

    Article  CAS  Google Scholar 

  45. Neely, J.R., K.M. Whitmer, and S. Mochizuki. Effects of mechanical activity and hormones on myocardial glucose and fatty acid utilization.Circ. Res., Suppl. 1 38:I22-I30, 1976.

    CAS  Google Scholar 

  46. Nimmo, H.G. and B. Houston. Rat adipose tissue glycerol phosphate acyltransferase can be inactivated by cyclic AMP-dependent protein kinase.Biochem. J. 176:607–610, 1978.

    PubMed  CAS  Google Scholar 

  47. Norum, K.R. Palmityl-CoA: carnitine palmityltransferase. Purification from calf-liver mitochondria and some properties of the enzyme.Biochim. Biophys. Acta 89:95–108, 1964.

    PubMed  CAS  Google Scholar 

  48. Noyes, E.E. and R.A. Bradshaw. L-3-Hydroxyacyl coenzyme A dehydrogenase from pig heart muscle. I. Purification and properties.J. Biol. Chem. 248:3052–3066, 1973.

    PubMed  CAS  Google Scholar 

  49. Noyes, B.E., B.E. Glatthaar, J.S. Garavelli, and R.A. Bradshaw. Structural and functional similarities between mitochondrial malate dehydrogenase and L-3-hydroxyacyl CoA dehydrogenase.Proc. Nat. Acad. Sci. USA 71:1334–1338, 1974.

    Article  PubMed  CAS  Google Scholar 

  50. Numa, S. and S. Yamashita. Regulation of lipogenesis in animal tissues.Curr. Top. Cell. Regul. 8: 197–246, 1974.

    PubMed  CAS  Google Scholar 

  51. Opie, L.H. Metabolism of free fatty acids, glucose and catecholamines in acute myocardial infarction. Relation to myocardial ischemia and infarct size.Am. J. Cardiol. 36:938–953, 1975.

    Article  PubMed  CAS  Google Scholar 

  52. Opie, L.H. Role of carnitine in fatty acid metabolism of normal and ischemic myocardium.Am. Heart J. 97:375–388, 1979.

    Article  PubMed  CAS  Google Scholar 

  53. Oram, J.F., S.I. Bennetch, and J.R. Neely. Regulation of fatty acid utilization in isolated perfused rat hearts.J. Biol. Chem. 248:5299–5309, 1973.

    PubMed  CAS  Google Scholar 

  54. Pande, S.V. On rate-controlling factors of long chain fatty acid oxidation.J. Biol. Chem. 246:5381–5390, 1971.

    Google Scholar 

  55. Pande, S.V. A mitochondrial carnitine acylcarnitine translocase system.Proc. Nat. Acad. Sci. USA 72: 883–887, 1975.

    Article  PubMed  CAS  Google Scholar 

  56. Pande, S.V. and J.F. Mead. Long chain fatty acid activation in subcellular preparations from rat liver.J. Biol. Chem. 243:352–361, 1968.

    PubMed  CAS  Google Scholar 

  57. Pande, S.V. and R. Parvin. Characterization of carnitine acyl-carnitine translocase system of heart mitochondria.J. Biol. Chem. 251:6683–6691, 1976.

    PubMed  CAS  Google Scholar 

  58. Pittman, R.C., E.C. Golanty, and D. Steinberg. A second form of hormone sensitive lipase from rat adipose tissue homogenates.Biochim. Biophys. Acta 270:81–85, 1972.

    PubMed  CAS  Google Scholar 

  59. Ramsay, R.R. The role of carnitine, the carnitine acyltransferases and the carnitine-exchange system.Biochem. Soc. Trans. 6:72–76, 1978.

    PubMed  CAS  Google Scholar 

  60. Ramsay, R.R. and P.K. Tubbs. The effects of temperature and some inhibitors on the carnitine exchange system of heart mitochondria.Eur. J. Biochem. 69:299–303, 1976.

    Article  PubMed  CAS  Google Scholar 

  61. Ruzicka, F.J. and H. Beinert. A new iron-sulfur flavoprotein of the respiratory chain. A component of the fatty acid β oxidation pathway.J. Biol. Chem. 252:8440–8445, 1977.

    PubMed  CAS  Google Scholar 

  62. Schifferdecker, J. and H. Schulz. The inhibition of L-3-hydroxyacyl-CoA dehydrogenase by acetoacetyl-CoA and the possible effect of this inhibition on fatty acid oxidation.Life Sci. 14:1487–1492, 1974.

    Article  PubMed  CAS  Google Scholar 

  63. Schlossman, D.M. and R.M. Bell. Microsomal sn-glycerol 3-phosphate and dihydroxyacetone phosphate acyltransferase activities from liver and other tissues. Evidence for a single enzyme catalyzing both reactions.Arch. Biochem. Biophys. 182:732–742, 1977.

    Article  PubMed  CAS  Google Scholar 

  64. Schulz, H. Long chain enoyl coenzyme A hydratase from pig heart.J. Biol. Chem. 249:2704–2709, 1974.

    PubMed  CAS  Google Scholar 

  65. Shahab, L., A. Wollenberger, E. G. Krause, and S. Genz. Catecholamines and cyclic AMP levels. In:Effect of Acute Ischemia on Myocardial Function, edited by M.F. Oliver, D.G. Julian, and K.W. Donald. Baltimore: Williams & Wilkins, 1972, pp. 99–107.

    Google Scholar 

  66. Staack, H., J.F. Binstock, and H. Schulz. Purification and properties of a pig heart thiolase with broad chain length specificity and comparison of thiolase from pig heart and Escherichia coli.J. Biol. Chem. 253: 827–1831, 1978.

    Google Scholar 

  67. Stand, O., M. Vaughn, and D. Steinberg. Rat adipose tissue lipases: Hormone-sensitive lipase activity against triglycerides compared with activity against lower glycerides.J. Lipid Res. 5:554–562, 1964.

    Google Scholar 

  68. Tsai, S.C., P. Belfrage, and M. Vaughn. Activation of hormone-sensitive lipase in extracts of adipose tissue.J. Lipid Res. 11:466–472, 1970.

    PubMed  CAS  Google Scholar 

  69. van den Bosch, H. Phosphoglyceride metabolism.Ann. Rev. Biochem. 43:243–277, 1974.

    Article  PubMed  Google Scholar 

  70. Waterson, R.M. and R.L. Hill. Enoyl coenzyme A hydratase (crotonase). Catalytic properties of crotonase and its possible regulatory role in fatty acid oxidation.J. Biol. Chem. 247:5258–5265, 1972.

    PubMed  CAS  Google Scholar 

  71. Whitmer, J.T., J.A. Idell-Wenger, M.J. Rovetto, and J.R. Neely. Control of fatty acid metabolism in ischemic and hypoxic hearts.J. Biol. Chem. 253:4305–4309, 1978.

    PubMed  CAS  Google Scholar 

  72. Yamashita, S. and S. Numa. Partial purification and properties of glycerophosphate acyltransferase from rat liver. Formation of 1-acyl-glycerol 3-phosphate from sn-glycerol 3-phosphate and palmityl coenzyme A.Eur. J. Biochem. 31:565–573, 1972.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NIH grant HL 15622.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohn, M.C., Garfinkel, D. Computer simulation of metabolism in palmitate-perfused rat heart. I. Palmitate oxidation. Ann Biomed Eng 11, 361–384 (1983). https://doi.org/10.1007/BF02584214

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584214

Keywords

Navigation