Skip to main content
Log in

cAMP-dependent inward rectifier current in neurons of the rat suprachiasmatic nucleus

  • Original Article
  • Neurophysiology, Muscle and Sensory Organs
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Electrophysiological properties of the inward rectification of neurons in the rat suprachiasmatic nucleus (SCN) were examined by using the single-electrode voltage-clamp method, in vitro. Inward rectifier current (I H) was produced by hyperpolarizing step command potentials to membrane potentials negative to approximately −60 mV in nominally zero-Ca2+ Krebs solution containing tetrodotoxin (1 μM), tetraethylammonium (40 mM), Cd2+ (500 μM) and 4-aminopyridine (1 mM).I H developed during the hyperpolarizing step command potential with a duration of up to 5 s showing no inactivation with time.I H was selectively blocked by extracellular Cs+ (1 mM). The activation of the H-channel conductance (G H) ranged between −55 and −120 mV. TheG H was 80–150 pS (n=4) at the half-activation voltage of −84±7 mV (n=4). The reversal potential ofI H obtained by instantaneous current voltage (I/V) relations was −41±6mV (n=4); it shifted to −51±8mV (n=3) in low-Na+ (20 mM) solution and to −24±4 mV (n=4) in high-K+ (20 mM) solution. Forskolin (1–10 μM) produced an inward current and increased the amplitude ofI H. Forskolin did not change the half-activation voltage ofG H. 8-Bromo-adenosine 3′,5′-cyclic monophosphate (8-Br-cAMP, 0.1–1 mM) and dibutyryl-cAMP (0.1–1 mM) enhancedI H. 3-Isobutyl-1-methylxanthine (IBMX, 1 mM) also enhancedI H. The results suggest that the inward rectifier cation current is regulated by the basal activity of adenylate cyclase in neurons of the rat SCN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akasu T, Shoji S, Hasuo H (1993) Inward rectifier and lowthreshold calcium currents contribute to the spontaneous firing mechanism in neurons of the rat suprachiasmatic nucleus. Pflügers Arch 425:109–116

    Article  PubMed  CAS  Google Scholar 

  2. Bos NPA, Mirmiran M (1990) Circadian rhythms in spontaneous neuronal discharges of the cultured suprachiasmatic nucleus. Brain Res 511:158–162

    Article  PubMed  CAS  Google Scholar 

  3. Chenoy-Marchais D (1982) A Cl-conductance activated by hyperpolarization inAplysia neurones. Nature 299:359–361

    Article  PubMed  CAS  Google Scholar 

  4. Crepel F, Penit-Soria J (1986) Inward rectification and low threshold calcium conductance in rat cerebellar Purkinje cells. Anin vitro study. J Physiol (Lond) 372:1–23

    CAS  Google Scholar 

  5. DiFrancesco D (1985) The cardiac hyperpolarizing-activated current,i f. Origins and developments. Prog Biophys Mol Biol 46:163–183

    Article  PubMed  CAS  Google Scholar 

  6. Gillette MU, Presser RA (1988) Circadian rhythm of the rat suprachiasmatic brain slice is rapidly reset by daytime application of cAMP analogs. Brain Res 474:348–352

    Article  PubMed  CAS  Google Scholar 

  7. Green D, Gillette R (1982) Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res 245:198–200

    Article  PubMed  CAS  Google Scholar 

  8. Groos G, Hendriks J (1982) Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci Lett 34:283–288

    Article  PubMed  CAS  Google Scholar 

  9. Hall AE, Hutter OF, Noble D (1963) Current-voltage relations of Purkinje fibres in sodium-deficient solutions. J Physiol (Lond) 166:225–240

    CAS  Google Scholar 

  10. Halliwell JV, Adams PR (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250:71–92

    Article  PubMed  CAS  Google Scholar 

  11. Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer Associates, Sunderland, Mass

    Google Scholar 

  12. Katz B (1949) Les constantes électriques de la membrane du muscle. Arch Sci Physiol 3:285–300

    CAS  Google Scholar 

  13. Kim YI, Dudek FE (1993) Membrane properties of rat suprachiasmatic nucleus neurons receiving optic nerve input. J Physiol (Lond) 464:229–243

    CAS  Google Scholar 

  14. Leech CA, Stanfield PR (1981) Inward rectification in frog skeletal muscle fibres and its dependence on membrane potential and external potassium. J Physiol (Lond) 319:295–309

    CAS  Google Scholar 

  15. Mayer ML, Westbrook GL (1983) A voltage-clamp analysis of inward (anomalous) rectification in mouse spinal sensory ganglion neurones. J Physiol (Lond) 340:19–45

    CAS  Google Scholar 

  16. McCormick DA, Pape H-C (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol (Lond) 431:291–318

    CAS  Google Scholar 

  17. Meijer JH, Rietveld WJ (1989) Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev 69:671–707

    PubMed  CAS  Google Scholar 

  18. Nelson RJ, Zucker I (1981) Absence of extraocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight. Comp Biochem Physiol 69A: 145–148

    Article  Google Scholar 

  19. Nikaido SS, Takahashi JS (1989) Twenty-four hour oscillation of cAMP in chick pineal cells: role of cAMP in the acute and circadian regulation of melatonin production. Neuron 3:609–619

    Article  PubMed  CAS  Google Scholar 

  20. Prosser RA, Gillette MU (1989) The mammalian circadian clock in the suprachiasmatic nuclei is resetin vitro by cAMP. J Neurosci 9:1073–1081

    PubMed  CAS  Google Scholar 

  21. Rogawski MA (1985) The A-current: how ubiquitous a feature of excitable cells is it? Trends Neurosci 8:214–219

    Article  Google Scholar 

  22. Rudy B (1988) Diversity and ubiquity of K channels. Neuroscience 25:729–749

    Article  PubMed  CAS  Google Scholar 

  23. Shibata S, Oomura Y, Kita H, Hattori K (1982) Circadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice. Brain Res 247:154–158

    Article  PubMed  CAS  Google Scholar 

  24. Spain WJ, Schwindt PC, Crill WE (1987) Anomalous rectification in neurons from cat sensorimotor cortex in vitro. J Neurophysiol 57:1555–1576

    PubMed  CAS  Google Scholar 

  25. Sugimori M, Shibata S, Oomura Y (1986) Electrophysiological bases for rhythmic activity in the suprachiasmatic nucleus of the rat: anin vitro study. In: Oomura Y (ed) Emotions: neuronal and chemical control. Japan Scientific Societies Press, Tokyo, pp 199–206

    Google Scholar 

  26. Takahashi JS, Zatz M (1982) Regulation of circadian rhythmicity. Science 217:1104–1111

    Article  PubMed  CAS  Google Scholar 

  27. Takahashi T (1990) Inward rectification in neonatal rat spinal motoneurones. J Physiol (Lond) 423:47–62

    CAS  Google Scholar 

  28. Thomson AM, West DC (1990) Factors affecting slow regular firing in the suprachiasmatic nucleusin vitro. J Biol Rhythms 5:59–75

    Article  PubMed  CAS  Google Scholar 

  29. Tokimasa T, Akasu T (1990) Cyclic AMP regulates an inward rectifying sodium-potassium current in dissociated bull-frog sympathetic neurones. J Physiol (Lond) 420:409–429

    CAS  Google Scholar 

  30. Turek FW (1985) Circadian neural rhythms in mammals. Annu Rev Physiol 47:49–64

    Article  PubMed  CAS  Google Scholar 

  31. Van den Pol AN (1980) The hypothalamic suprachiasmatic nucleus of rat: intrinsic anatomy. J Comp Neurol 191:661–702

    Article  PubMed  Google Scholar 

  32. Williams JT, Colmers WF, Pan ZZ (1988) Voltage- and ligandactivated inwardly rectifying currents in dorsal raphe neuronsin vitro. J Neurosci 8:3499–3506

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akasu, T., Shoji, S. cAMP-dependent inward rectifier current in neurons of the rat suprachiasmatic nucleus. Pflugers Arch. 429, 117–125 (1994). https://doi.org/10.1007/BF02584037

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584037

Key words

Navigation