Skip to main content
Log in

Age-dependent expression of high-voltage activated calcium currents during cerebellar granule cell development in situ

  • Original Article
  • Neurophysiology, Muscle and Sensory Organs
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Ca2+ currents play a crucial role during neuronal growth. In this paper we describe the development of Ca2+ currents using whole-cell patch-clamp recordings in granule cells of cerebellar slices obtained from 7- to 24day-old rats. Granule cells expressed high-voltage-activated (HVA) Ca2+ currents in different proportions. The percentage of cells with a measurable HVA current, and the size of HVA current increased in parallel with granule cell maturation. At less than 14 days HVA currents consisted of a fast- and slow-inactivating component, while at more than 19 days only the slow-inactivating component remained. The fast-inactivating component had faster activation and inactivation kinetics, a more negative threshold for activation, and steeper steady-state inactivation than the slow-inactivating component. Nifedipine (5 μM) partially blocked both components.ω-Conotoxin (5 μM,ω-CgTx) blocked the slow-inactivating component rather selectively. These results indicate that HVA currents change their gating and pharmacological properties during development. Although the mechanism at the molecular level remains speculative, the developmental changes of the HVA current are relevant to the processes of granule cell maturation and excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altman J (1982) Morphological development of the rat cerebellum and a source of its mechanism. In: Chan-Palay V, Palay S (eds) The cerebellum: new vistas. Springer, Berlin Heidelberg New York, pp 8–49

    Google Scholar 

  2. Bertolino M, Llinas RR (1992) The central role of voltage-activated and receptor-operated calcium channels in neuronal cells. Annu Rev Pharmacol Toxicol 32:399–421

    Article  PubMed  CAS  Google Scholar 

  3. Bertolino M, Vicini S, Llinas RR, Costa E (1990) Voltage-dependent calcium currents in rat cerebellar granule neurons (CGN). Soc Neurosci Abstr 16:956

    Google Scholar 

  4. Bickmeyer U, Muller E, Wiegand H (1993) Development of calcium currents in cultures of mouse spinal cord and dorsal root ganglion neurones. Neuroreport 4:131–134

    Article  PubMed  CAS  Google Scholar 

  5. Boll W, Lux HD (1986) Blockade of neuronal calcium conductances by organic antagonists. Exp Brain Res 14:104–111

    CAS  Google Scholar 

  6. Bossu JL, De Waard M, Fagni L, Tanzi F, Feltz A (1994) Characteristics of Ca channels responsible for voltage-activated Ca entry in rat cerebellar granule cells. Eur J Neurosci 6:335–344

    Article  PubMed  CAS  Google Scholar 

  7. Burgoyne RD, Cambray-Deakin MA (1988) The cellular neurobiology of neuronal development: the cerebellar granule cell. Brain Res Rev 13:77–101

    Article  Google Scholar 

  8. Carbone E, Lux HD (1987) Kinetics and selectivity of a lowvoltage-activated calcium current in chick and rat sensory neurones. J Physiol (Lond) 386:547–570

    CAS  Google Scholar 

  9. Carbone E, Swandulla D (1989) Neuronal calcium channels: kinetics, blockade and modulation. Prog Biophys Mol Biol 54:31–58

    Article  PubMed  CAS  Google Scholar 

  10. Carbone E, Sher E, Clementi F (1990) Ca currents in human neuroblastoma IMR32 cells: kinetics, permeability and pharmacology. Pflügers Arch 416:170–179

    Article  PubMed  CAS  Google Scholar 

  11. D'Angelo E, Rossi P, Garthwaite J (1990) Dual-component NMDA receptor currents at a single central synapse. Nature 346:467–470

    Article  PubMed  Google Scholar 

  12. D'Angelo E, Rossi P, Taglietti V (1993) Different proportions of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor currents at the mossy fibre-granule cell synapse of developing rat cerebellum. Neuroscience 53:121–130

    Article  PubMed  Google Scholar 

  13. D'Angelo E, Rossi P, De Filippi G, Magistretti J, Taglietti V (1994) The relationship between synaptogenesis and development of voltage-dependent currents in cerebellar granule cells in situ. J Physiol (Paris) 88:197–207

    Article  Google Scholar 

  14. De Waard M, Feltz A, Bossu JL (1991) Properties of a highthreshold voltage-activated calcium current in rat cerebellar granule cells. Eur J Neurosci 3:771–777

    Article  PubMed  Google Scholar 

  15. Edwards FA, Konnerth A, Sakmann B, Takahashi T (1989) A thin slice preparation for patch-clamp recordings from neurons of the mammalian central nervous system. Pflügers Arch 414:600–612

    Article  PubMed  CAS  Google Scholar 

  16. Ellinor PT, Zhang J-F, Randall AD, Zhou M, Schwarz TL, Tsien RW, Horne WA (1993) Functional expression of a rapidly inactivating neuronal calcium channel. Nature 363:455–458

    Article  PubMed  CAS  Google Scholar 

  17. Forti L, Pietrobon L (1993) Functional diversity of L-type calcium channels in rat cerebellar neurons. Neuron 10:437–450

    Article  PubMed  CAS  Google Scholar 

  18. Giffin K, Solomon JS, Burkhalter A, Nerbonne JM (1991) Differential expression of voltage-gated calcium channels in identified visual cortical neurons. Neuron 6:321–332

    Article  PubMed  CAS  Google Scholar 

  19. Gutnick MJ, Lux HD, Swandulla D, Zucker H (1989) Voltagedependent and calcium dependent inactivation of calcium channel current in identified snail neurones. J Physiol (Lond) 412:197–220

    CAS  Google Scholar 

  20. Hamori J, Somogyi J (1983) Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscope study. J Comp Neurol 220:365–377

    Article  PubMed  CAS  Google Scholar 

  21. Haws CM, Slesinger PA, Lansman JB (1993) Dihydropyridine and w-conotoxin-sensitive Ca2+ currents in cerebellar neurons: persistent block of L-type channels by a pertussis toxin-sensitive G-protein. J Neurosci 13:1148–1156

    PubMed  CAS  Google Scholar 

  22. Hess P, Lansman JB, Tsien RW (1984) Different modes of Ca channel gating behavior favoured by dihydropyridine Ca agonists and antagonists. Nature 311:538–544

    Article  PubMed  CAS  Google Scholar 

  23. Komuro H, Rakic P (1992) Selective role of N-type calcium channels in neuronal migration. Science 257:806–809

    Article  PubMed  CAS  Google Scholar 

  24. Llinas R, Sugimori M, Hillman DE, Cherksey B (1992) Distribution and functional significance of the P-type voltage-dependent Ca2+ channels in the mammalian central nervous system. Trends Neurosci 15:351–355

    Article  PubMed  CAS  Google Scholar 

  25. Marchetti C, Carignani C, Robello M (1991) Voltage-dependent calcium currents in dissociated granule cells from cat cerebellum. Neuroscience 43:121–133

    Article  PubMed  CAS  Google Scholar 

  26. Mintz IM, Venema VJ, Swiderek KM, Lee TD, Bean BP, Adams ME (1992) P-type calcium channels blocked by the spider toxin w-Aga-IVA. Nature 355:827–829

    Article  PubMed  CAS  Google Scholar 

  27. Minth IM, Adams ME, Bean BP (1993) P-type calcium channels in rat central and peripheral neurons. Neuron 9:85–95

    Article  Google Scholar 

  28. Plummer MR, Hess P (1991) Reversible uncoupling of inactivation in N-type calcium channels. Nature 351:657–659

    Article  PubMed  CAS  Google Scholar 

  29. Plummer MR, Logothetis DE, Hess P (1989) Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron 2:1453–1463

    Article  PubMed  CAS  Google Scholar 

  30. Puro DG, Woodward DJ (1977) Maturation of evoked mossy fibre input to rat cerebellar Purkinje cells. Exp Brain Res 28:427–441

    PubMed  CAS  Google Scholar 

  31. Slesinger PA, Lansman JB (1991) Inactivation of calcium currents in granule cells cultured from mouse cerebellum. J Physiol (Lond) 435:101–121

    CAS  Google Scholar 

  32. Slesinger PA, Lansman JB (1991) Inactivating and non-inactivating dihydropyridine-sensitive Ca2+ channels in mouse cerebellar granule cells. J Physiol (Lond) 439:301–323

    CAS  Google Scholar 

  33. Spruston N, Jaffe DB, Williams SH, Johnston D (1993) Voltage- and space-clamp errors associated with measurement of electrotonically remote synaptic events. J Neurophysiol 70:781–802

    PubMed  CAS  Google Scholar 

  34. Streit J, Lux HD (1990) Calcium current inactivation during nerve-growth-factor-induced differentiation of PCl2 cells. Pflügers Arch 416:368–374

    Article  PubMed  CAS  Google Scholar 

  35. Swandulla D, Carbone E, Lux HD (1991) Do calcium channel classifications account for neuronal calcium channel diversity? Trends Neurosci 14:46–51

    Article  PubMed  CAS  Google Scholar 

  36. Thompson SM, Wong RKS (1991) Development of calcium current subtypes in isolated rat hippocampal pyramidal cells. J Physiol (Lond) 439:671–689

    CAS  Google Scholar 

  37. Toselli M, Masetto S, Rossi P, Taglietti V (1991) Characterization of a voltage-dependent calcium current in the human neuroblastoma cell line SH-SY5Y during differentiation. Eur J Neurosci 3:514–522

    Article  PubMed  Google Scholar 

  38. Traynelis SF, Silver RA, Cull-Candy SG (1993) Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse. Neuron 11:279–289

    Article  PubMed  CAS  Google Scholar 

  39. Yaari Y, Hamon B, Lux HD (1987) Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science 235:680–682

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, P., D'Angelo, E., Magistretti, J. et al. Age-dependent expression of high-voltage activated calcium currents during cerebellar granule cell development in situ. Pflugers Arch. 429, 107–116 (1994). https://doi.org/10.1007/BF02584036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584036

Key words

Navigation