Skip to main content
Log in

Hormone-fuel metabolism during exercise of insulin-dependent diabetic patients treated with an artificial B-cell unit

  • Published:
Acta diabetologia latina Aims and scope Submit manuscript

Summary

The effects of restoration of glucose homeostasis on hormone-fuel metabolism of diabetic individuals during exercise (40% maximal O2 consumption) were determined by monitoring fuel oxidation rates and levels of substrates and hormones in nine normal subjects and five insulin-dependent diabetic patients while on conventional insulin therapy and after 3 days on artificial B-cell directed glucose regulation. The non-protein respiratory quotient (npRQ) and carbohydrate oxidation rate of the conventionally-treated diabetic subjects (0.908±0.002 and 538±5 mg/m2·min) were lower and the lipid oxidation rate (101±2 mg/m2·min) was significantly higher than those of the normal group during the bicycle exercise (0.937±0.004, 582±8, and 70±4 mg/m2·min, respectively). After 3 days of artificial B-cell insulin therapy, the npRQ and carbohydrate oxidation rate of the exercising diabetics significantly increased to 0.965±0.004 and 693±13 mg/m2·min, while the lipid oxidation rate declined to 39±4 mg/m2·min (p<0.001). We conclude that artificial B-cell directed insulin therapy increases carbohydrate oxidation and decreases lipid oxidation in exercising insulin-dependent diabetic subjects. However, if restoration of metabolic response identical to that of exercising normals is desired, the excess in carbohydrate oxidation coincident with elevated blood lactate and pyruvate levels suggest that the artificial B-cell therapy may not have been completely optimal, probably due to the hyperinsulinization of the diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlborg G., Felio P., Hagenfeldt L., Hendler R., Wahren J.: Substrate turnover during prolonged exercise in man: splanchnic and leg metabolism of glucose, free fatty acids and amino acids — J. clin. Invest.53, 1080, 1974.

    PubMed  CAS  Google Scholar 

  2. Albisser A. M., Leibel B. S., Ewart T. G., Davidovac Z., Botz C. K., Zingg W., Schipper H., Gander R.: Clinical control of diabetes by artificial pancreas — Diabetes23, 397, 1974.

    PubMed  CAS  Google Scholar 

  3. Berger M., Berchtold P., Cüppers H. J., Drost H., Kley H. K., Müller W. A., Wiegelmann W., Zimmermann-Telschow H., Gries F. A., Krüskemper H. L., Zimmermann H.: Metabolic and hormonal effects of muscular exercise in juvenile type diabetics — Diabetologia13, 355, 1977.

    Article  PubMed  CAS  Google Scholar 

  4. Calbiochem Doc. no LR 2021 (1977). Suggested guide for the radioimmunoassay of human C-peptide.

  5. Costill D. L., Coyle E., Dalsky D., Evans W., Fink W., Hoopes D.: Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise — J. appl. Physiol.43, 695, 1977.

    PubMed  CAS  Google Scholar 

  6. Felig P., Wahren J.: Fuel homeostasis in exercise — New Engl. J. Med.293, 1078, 1975.

    Article  PubMed  CAS  Google Scholar 

  7. Foss M. C., Vlachokosta F. V., Cunningham L. N., Aoki T. T.: Restoration of glucose homeostasis in insulin-dependent diabetic subjects. An inducible process — Diabetes31, 46, 1982.

    Article  PubMed  CAS  Google Scholar 

  8. Huggett A. S. G., Nixon D. A.: Use of glucose oxidase, peroxidase and 0-dianisidine in determination of blood and urinary glucose — Lancetii, 368, 1957.

    Article  Google Scholar 

  9. Hultman E.: Studies on muscle metabolism of glycogen and active phosphate in man with special reference to exercise and diet — Scand. J. clin. Lab. Invest.19 (Suppl. 94), 1, 1967.

    Google Scholar 

  10. Issekutz B. Jr., Rodahl K.: Respiratory quotient during exercise — J. appl. Physiol.16, 606, 1961.

    PubMed  CAS  Google Scholar 

  11. Joslin E. P., Root H. F., White P., Marble A. (Ed.): The treatment of diabetes mellitus, 10th ed. Lea and Febiger, Philadelphia, 1959; p. 243.

    Google Scholar 

  12. Lawrence R. D.: The effect of exercise on insulin action in diabetes — Brit. med. J.1, 648, 1926.

    PubMed  Google Scholar 

  13. Lusk G.: Animal calorimetry. Analysis of the oxidation of mixtures of carbohydrate and fat — J. biol. Chem.59, 41, 1924.

    CAS  Google Scholar 

  14. Marble A., Smith R. M.: Exercise in diabetes mellitus — Arch. intern. Med.58, 577, 1936.

    CAS  Google Scholar 

  15. Mellanby J., Williamson D. H.: Acetoacetate. In:Bergmeyer H. (Ed.): Methods of Enzymatic Analysis, 2nd edition. Academic Press, New York, 1974; p. 1840.

    Google Scholar 

  16. Nakagawa S., Nakayama H., Sasaki T., Yoshino K., Yu Y. Y., Shinozaki K., Aoki S., Mashimo K.: A simple method for the determination of serum free insulin levels in insulin-treated patients — Diabetes22, 590, 1973.

    PubMed  CAS  Google Scholar 

  17. Novak M.: Colorimetric ultramicro method for the determination of free fatty acids — J. Lipid Res.6, 431, 1965.

    PubMed  CAS  Google Scholar 

  18. Passonneau J. V.: L(+)-lactate. In: Bergmeyer H. (Ed.): Methods of Enzymatic Analysis, 2nd edition. Academic Press, New York, 1974; p. 1468.

    Google Scholar 

  19. Passonneau J. V., Lowry O. H.: Pyruvate: Fluorimetric assay. In:Bergmeyer H. (Ed.): Methods of Enzymatic Analysis, 2nd ed. Academic Press, New York, 1974; p. 1452.

    Google Scholar 

  20. Peters J. P., Van Slyke D. D.: Total metabolism. In: Quantitative Clinical Chemistry, 2nd ed. Williams and Wilkins, Baltimore, 1946; p. 1.

    Google Scholar 

  21. Pfeiffer E. P., Thum Ch., Clemens A. H.: The artificial beta-cell. A continuous control of blood sugar by external regulation of insulin infusion (glucose controlled insulin infusion system) — Hormone metab. Res.6, 339, 1974.

    Article  CAS  Google Scholar 

  22. Unger R. H., Aguilar-Parada E., Müller W. A., Eisentraut A. M.: Studies of pancreatic alpha-cell function in normal and diabetic subjects — J. clin. Invest.49, 837, 1970.

    PubMed  CAS  Google Scholar 

  23. Wahren J., Felig P., Ahlborg G., Jorfeldt L.: Glucose metabolism during leg exercise in man — J. clin. Invest.50, 2715, 1971.

    PubMed  CAS  Google Scholar 

  24. Wahren J., Felig P., Hagenfeldt L.: Physical exercise and fuel homeostasis in diabetes mellitus — Diabetologia14, 213, 1978.

    Article  PubMed  CAS  Google Scholar 

  25. Wahren J., Hangefeldt L., Felig P.: Splanchnic and leg exchange of glucose, amino acids, and free fatty acids during exercise in diabetes mellitus — J. clin. Invest.55, 1303, 1975.

    Article  PubMed  CAS  Google Scholar 

  26. Wieland O.: Glycerol: UV-Method. In:Bergmeyer H. (Ed.): Methods of Enzymatic Analysis, 2nd ed. Academic Press, New York, 1974; p. 1404.

    Google Scholar 

  27. Williamson D. H., Mellanby J.: D(−)-3-hydroxybutyrate. In:Bergmeyer H. (Ed.): Methods of Enzymatic Analysis, 2nd ed. Academic Press, New York, 1974; p. 1836.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by NIH grants AM 15191 and AM 20530, Howard Hughes Medical Institute (U.S.A.), and FAPESP (Brazil) (no 78/1131)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foss, M.C., Cunningham, L.N. & Aoki, T.T. Hormone-fuel metabolism during exercise of insulin-dependent diabetic patients treated with an artificial B-cell unit. Acta diabet. lat 26, 185–194 (1989). https://doi.org/10.1007/BF02581384

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02581384

Key-words

Navigation