Skip to main content
Log in

The lagrange approach to infinite linear programs

  • Published:
Top Aims and scope Submit manuscript

Abstract

In this paper, we use the Lagrange multipliers approach to study a general infinite-dimensionalinequality-constrained linear program IP. The main problem we are concerned with is to show that thestrong duality condition for IP holds, so that IP and its dual IP* are both solvable and their optimal values coincide. To do this, we first express IP as a convex program with a Lagrangian function L, say. Then we show that the strong duality condition implies the existence of a saddle point for L, and that, under an additional, mild condition, theconverse is also true. Moreover, the saddle point gives optimal solutions for IP and IP*. Thus, our original problem is essentially reduced to prove the existence of a saddle point for L, which is shown to be the case under suitable assumptions. We use this fact to studyequality-constrained programs, and we illustrate our main results with applications to thegeneral capacity and themass transfer problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman E. (1999).Constrained Markov Decision Processes. Chapman & Hall/CRC.

  • Anderson E.J. and Nash P. (1987).Linear Programming in Infinite Dimensional Spaces. Wiley.

  • Anderson E.J., Lewis A. S. and Wu S.Y. (1989). The capacity problem.Optimization 20, 725–742.

    Google Scholar 

  • Craven B.D. (1978).Mathematical Programming and Control Theory. Chapman and Hall.

  • Cuesta-Albertos J.A., Matrán C., Rachev S.T. and Rüschendorf L.R. (1996). Mass transportation problems in probability theory.Mathematical Scientist 21, 37–72.

    Google Scholar 

  • Diestel J. (1984).Sequences and Series in Banach Spaces. Springer-Verlag.

  • Duffin R.J. (1956). Infinite programs. In: Kuhn H. W. and Tucker A. W. (eds.),Linear Inequalities and Related Systems. Princeton University Press, 157–170.

  • Duffin R.J. and Karlovitz L.A. (1965). An infinite linear program with a duality gap.Management Science 12, 122–134.

    Article  Google Scholar 

  • Eisner M.J. and Olsen P. (1975). Duality for stochastic programming interpreted as L. P. inL P -space.SIAM Review 35, 380–429.

    Google Scholar 

  • Feinberg E. and Shwartz A. (1996). Constrained discounted dynamic programming.Mathematics of Operations Research 21, 922–945.

    Google Scholar 

  • Gabriel J.R. and Hernández-Lerma O. (2001). Strong duality of the general capacity problem in metric spaces.Mathematical Methods of Operations Research 53, 25–34.

    Article  Google Scholar 

  • Goberna M.A. and López M.A. (1998).Linear Semi-Infinite Optimization. Wiley.

  • Gol’stein E.G. (1972).Theory of Convex Programming. Translations of Math. Mono. Vol. 36, American Mathematical Society.

  • Hernández-Lerma O., González-Hernández J. and López-Martínez R.R. (2001). Constrained average cost Markov control processes in Borel spaces. Reporte interno No. 295, CINVESTAV-IPN, México.

    Google Scholar 

  • Hernández-Lerma O. and Lasserre J.B. (1996).Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag.

  • Hernández-Lerma O. and Lasserre J.B. (1998). Approximation schemes for infinite linear programs.SIAM Journal of Optimization 32, 973–988.

    Article  Google Scholar 

  • Hernández-Lerma O. and Lasserre J.B. (1999).Further Topics on Discrete-Time Markov Control Processes. Springer-Verlag.

  • Hettich R. and Kortanek K.O. (1993). Semi-infinite programming: theory, methods, and applications.SIAM Review 35, 380–429.

    Article  Google Scholar 

  • Kantorovich L.V. (1942). On the translocation of masses.Doklady Akademii Nauk SSSR 37, 199–201.

    Google Scholar 

  • Kellerer H.G. (1988). Measure theoretic versions of linear programming.Mathematische Zeitschrift 198, 367–400.

    Article  Google Scholar 

  • Lai H.C. and Wu S.Y. (1992). Extremal points and optimal solutions for general capacity problems.Mathematical Programming 54, 87–113.

    Article  Google Scholar 

  • Lai H.C. and Wu S.Y. (1994). Linear programming in measure spaces.Optimization 29, 141–156.

    Google Scholar 

  • Luenberger D.G. (1969).Optimization by Vector Space Methods. Wiley.

  • Luo X. and Bertsimas D. (1998). A new algorithm for state-constrained separated continuous linear programs.SIAM Journal of Control and Optimization 37, 177–210.

    Article  Google Scholar 

  • Monge G. (1781). Mémorie sur la théorie des déblais et rémblais.Mém. Acad. Sci. Paris.

  • Piunovskiy A.B. (1997).Optimal Control of Random Sequences in Problems with Constraints. Kluwer.

  • Ponstein J. (1980).Approaches to the Theory of Optimization. Cambridge University Press.

  • Rachev S.T. (1991).Probability Metrics and the Stability of Stochastic Models. Wiley.

  • Rockafellar R.T. (1974).Conjugate Duality and Optimization. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 16. SIAM.

  • Rockafellar R.T. (1993). Lagrange multipliers and optimality.SIAM Review 35, 183–238.

    Article  Google Scholar 

  • Romeijn H.E., Smith R.L. and Bean J.C. (1992). Duality in infinite dimensional linear programming.Mathematical Programming 53, 79–97.

    Article  Google Scholar 

  • Schaefer H.H. (1974).Banach Lattices and Positive Operators. Springer-Verlag.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was partially supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT) grants 32299-E and 37355-E. It was also supported by CONACYT (for JRG and RRLM) and PROMEP (for JRG) scholarships.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabriel, J.R., López-Martínez, R.R. & Hernández-Lerma, O. The lagrange approach to infinite linear programs. Top 9, 293–314 (2001). https://doi.org/10.1007/BF02579088

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02579088

Key Words

AMS subject classification

Navigation