Skip to main content
Log in

The distribution of brominated long-chain fatty acids in sponge and symbiont cell types from the tropical marine spongeAmphimedon terpenensis

  • Article
  • Published:
Lipids

Abstract

The tropical marine spongeAmphimedon terpenensis (family Niphatidae, order Haplosclerida) has previously been shown to possess unusual lipids, including unusual fatty acids. The biosynthetic origin of these fatty acids is of interest as the sponge supports a significant population of eubacterial and cyanobacterial symbionts. The total fatty acid composition of the sponge was analyzed by gas chromatography/mass spectrometry of the methyl esters. Among the most abundant of the fatty acids in intact tissue were 16∶0, 18∶0 and 3,7,11,15-tetramethylhexadecanoic (phytanic) acid. In addition, three brominated fatty acids, (5E,9Z)-6-bromo-5,9-tetracosadienoic acid (24∶2Br), (5E,9Z)-6-bromo-5,9-pentacosadienoic acid (25∶2Br) and (5E,9Z)-6-bromo-5,9-hexacosadienoic acid (26∶2Br) were also present. The three brominated fatty acids, together with phytanic acid, were isolated from both ectosomoal (superficial) and choanosomal (internal) regions of the sponge. Analysis of extracts prepared from sponge/symbiont cells, partitioned by density gradient centrifugation on Ficoll, indicated that phytanic acid and the three brominated fatty acids were associated with sponge cells only. Further, a fatty acid methyl ester sample from intact tissue ofA. terpenensis was partitioned according to phospholipid class, and the brominated fatty acids were shown to be associated with the phosphatidylserine and phosphatidylethanolamine fractions that are commonly present in marine sponge lipids. The phosphatidylcholine and phosphatidylglycerol fractions were rich in the relatively shorter chain fatty acids (16∶0 and 18∶0). The association of brominated long-chain fatty acids (LCFA) with sponge cells has been confirmed. The findings allow comment on the use of fatty acid profiles in chemotaxonomy and permit further interpretation of LCFA biosynthetic pathways in sponges. The assignment of the sponge studied, which is currently placed asA. terpenensis, is being supported to some extent, but the species is unusual in having C25 fatty acids as the major constituent in this group. Other factors, such as season or microenvironmental conditions, may influence observed fatty acid composition which tends to reduce the usefulness of fatty acid profiles as markers in sponge chemotaxonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CMF-ASW:

calcium magnesium free artificial sea water

FAME:

fatty acid methyl ester(s)

GC:

gas chromatography

GC/MS:

gas chromatography/mass spectrometry

HPLC:

high-performance liquid chromatography

LCFA:

long-chain fatty acid

MS:

mass spectrometry

NMR:

nuclear magnetic resonance

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

PS:

phosphatidylserine

TEM:

transition electron microscopy

VLFA:

very long-chain fatty acid

References

  1. Djerassi, C., and Lam, W.-K. (1991)Acc. Chem. Res. 24, 69–75.

    Article  CAS  Google Scholar 

  2. Djerassi, C., and Silva, C.J. (1991)Ibid. 24, 371–378.

    Article  CAS  Google Scholar 

  3. Kerr, R.G., and Baker, B.J. (1991)Nat. Prod. Rep. 8, 465–497.

    Article  CAS  Google Scholar 

  4. Litchfield, C., and Morales, R.W. (1976) inAspects of Sponge Biology, (Harrison, F.W., and Cowden, R.R., eds.) p. 183, Academic Press, New York.

    Chapter  Google Scholar 

  5. Garson, M.J. (1986)J.C.S. Chem. Commun., 35–36.

  6. Fookes, C.J.R., Garson, M.J., MacLeod, J.K., Skelton, B.W., and White, A.H. (1988)J.C.S. Perkin Trans. I, 1003–1011.

    Article  Google Scholar 

  7. Garson, M.J., Partali, V., Liaaen-Jensen, S., and Stoilov, I.L. (1988)Comp. Biochem. Physiol. 91B 293–300.

    CAS  Google Scholar 

  8. Garson, M.J., Thompson, J.E., Larsen, R.M., Battershill, C.N., Murphy, P.T., and Bergquist, P.R. (1992)Lipids 27, 378–388.

    Article  CAS  Google Scholar 

  9. Garson, M.J., Zimmermann, M.P., Hoberg, M., Larsen, R.M., Battershill, C.N., and Murphy, P.T. (1993)Lipids 28, 1011–1014.

    Article  CAS  PubMed  Google Scholar 

  10. Baker, J.T., Wells, R.J., Oberhansli, W.E., and Hawes, G.B. (1976)J. Am. Chem. Soc. 98, 4010–4011.

    Article  CAS  Google Scholar 

  11. Bergquist, P.R., Hofheinz, W., and Oesterhelt, G. (1980)Biochem. Syst. Ecol. 8, 423–435.

    Article  CAS  Google Scholar 

  12. Bergquist, P.R., Lavis, A., and Cambie, R.C. (1986)Biochem. Syst. Ecol. 14, 105–112.

    Article  CAS  Google Scholar 

  13. Bergquist, P.R., Karuso, P., Cambie, R.C., and Smith, D.J. (1991)Biochem. Syst. Ecol. 19, 17–24.

    Article  CAS  Google Scholar 

  14. Bergquist, P.R., and Wells, R.J. (1983) inMarine Natural Products. Chemical and Biological Perspectives (Scheuer, P.J., ed.) Vol. 5, p. 1, Academic Press, New York.

    Google Scholar 

  15. Thompson, J.E., Barrow, K.D., and Faulkner, D.J. (1983)Acta Zool. 64, 199–210.

    Article  Google Scholar 

  16. Lawson, M.P., Thompson, J.E., and Djerassi, C. (1988)Lipids 23, 1037–1048.

    Article  CAS  PubMed  Google Scholar 

  17. Zimmermann, M.P., Thomas, F.C., Thompson, J.E., Djerassi, C., Streiner, H., Evans, E., and Murphy, P.T. (1989)Lipids 24, 210–216.

    Article  Google Scholar 

  18. Zimmermann, M.P., Hoberg, M., Ayanoglu, E., and Djerassi, C. (1990)Lipids 25, 383–390.

    Article  Google Scholar 

  19. Bergquist, P.R., Lawson, M.P., Lavis, A., and Cambie, R.C. (1984)Biochem. Syst. Ecol. 12, 63–84.

    Article  CAS  Google Scholar 

  20. Lawson, M.P., Bergquist, P.R., and Cambie, R.C. (1984)Biochem. Syst. Ecol. 12, 375–393.

    Article  CAS  Google Scholar 

  21. Skipski, V.P., and Barclay, M. (1969)Methods Enzymol. 14, 530–598.

    Article  CAS  Google Scholar 

  22. Lawson, M.P., Thompson, J.E., and Djerassi, C. (1988)Lipids 23, 741–749.

    Article  CAS  PubMed  Google Scholar 

  23. Lawson, M.P., Bergquist, P.R., and Cambie, R.C. (1986)Tissue and Cell 18, 19–26.

    Article  CAS  PubMed  Google Scholar 

  24. Ayanoglu, E., Rizzolio, M., Beaulieu, S., Roberts, J., Oz, O., and Djerassi, C. (1990)Comp. Biochem. Physiol. 96B, 597–603.

    CAS  Google Scholar 

  25. Lam, W.-K., Hahn, S., Ayanoglu, E., and Djerassi, C. (1989)J. Org. Chem. 54, 3428–3432.

    Article  CAS  Google Scholar 

  26. Gillan, F.T., Stoilov, I.L., Thompson, J.E., Hogg, R.E., Wilkinson, C.R., and Djerassi, C. (1988)Lipids 23, 1139–1145.

    Article  CAS  PubMed  Google Scholar 

  27. Kenyon, C.N., Rippka, R., and Stanier, R.Y. (1972)Arch. Mikrobiol. 83, 216–236.

    Article  CAS  PubMed  Google Scholar 

  28. Harwood, J.L., and Russell, N.J. (1984) inLipids in Plants and Microbes, pp. 35–150, George Allen and Unwin, London.

    Book  Google Scholar 

  29. Kaneda, T. (1977)Bacteriol. Rev. 41 391–418.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tyrrell, D. (1968)Lipids 3, 368–372.

    Article  CAS  PubMed  Google Scholar 

  31. Wijekoon, W.M.D., Ayanoglu, E., and Djerassi, C. (1984)Tetrahedron Lett. 25, 3428–3432.

    Google Scholar 

  32. Schmitz, F.J., and Gopichand, Y. (1978)Tetrahedron Lett. 19, 3637–3640.

    Article  Google Scholar 

  33. Quinn, R.J., and Tucker, D.J. (1985)Tetrahedron Lett. 26, 1671–1672.

    Article  CAS  Google Scholar 

  34. Hirsch, S., Carmely, S., and Kashman, Y. (1987)Tetrahedron 43, 3257–3261.

    Article  Google Scholar 

  35. Quinn, R.J., and Tucker, D.J. (1991)J. Nat. Prod. 54, 290–294.

    Article  CAS  Google Scholar 

  36. Borguet-Kondracki, M.L., Rakotoarisoa, M.T., Martin, M.T., and Guyot, M. (1992)Tetrahedron. Lett. 33, 225–226.

    Article  Google Scholar 

  37. Patil, A.D., Kokke, W.C., Cochran, S., Francis, T.A., Tomszek, T., and Westley, J.W. (1992)J. Nat. Prod. 55, 1170–1177.

    Article  CAS  PubMed  Google Scholar 

  38. Fusetani, N., Li, H.-Y., Tamura, K., and Matsunaga, S. (1993)Tetrahedron 49, 1203–1210.

    Article  CAS  Google Scholar 

  39. Carballeira, N.M., and Shalabi, F. (1993)J. Nat. Prod. 56, 739–746.

    Article  CAS  PubMed  Google Scholar 

  40. Carballeira, N.M., and Emiliano, A. (1993)Lipids 28, 763–766.

    Article  CAS  PubMed  Google Scholar 

  41. Ichiba, T., Scheuer, P.J., and Kelly-Borges, M. (1993)Helv. Chim. Acta 76, 2814–2816.

    Article  CAS  Google Scholar 

  42. Carballeira, N.M., Shalabi, F., Cruz, C., Rodriguez, J., and Rodriguez, E. (1991)Comp. Biochem. Physiol. 100B, 489–492.

    CAS  Google Scholar 

  43. Walkup, R.D., Jamieson, G.C., Ratcliff, M.R., and Djerassi, C. (1981)Lipids 16, 631–646.

    Article  CAS  PubMed  Google Scholar 

  44. Carballeira, N.M., Maldonado, L., and Porras, B. (1987)Lipids 22, 767–769.

    Article  CAS  PubMed  Google Scholar 

  45. Carballeira, N.M., Maldonado, M.E., Rivera, E., and Porras, B. (1989)Biochem. Syst. Ecol. 17, 311–314.

    Article  CAS  Google Scholar 

  46. Carballeira, N.M., and Maldonado, L. (1988)Lipids 23, 682–684.

    Article  CAS  PubMed  Google Scholar 

  47. Barnathan, G., Miralles, J., Gaydou, E.M., Boury-Esnault, N., and Kornprobst, J.-M. (1992)Lipids 27, 779–784.

    Article  CAS  Google Scholar 

  48. Latyshev, N.A. Zhukova, N.V., Efremova S.M., Imbs, A.B., and Glysina, O.I. (1992)Comp. Biochem. Physiol. 102B, 961–965.

    CAS  Google Scholar 

  49. Fromont, J.E. (1993)The Beagle 10, 7–40.

    Google Scholar 

  50. Carballeira, N.M., and Lopez, M.R. (1989)Lipids 24, 89–91.

    Article  CAS  PubMed  Google Scholar 

  51. Carballeira, N.M., Negron, V., and Reyes, E.D. (1992)J. Nat. Prod. 55, 333–339.

    Article  CAS  Google Scholar 

  52. Carballeira, N.M., and Restituyo, J. (1991)J. Nat. Prod. 54, 315–317.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Garson, M.J., Zimmermann, M.P., Battershill, C.N. et al. The distribution of brominated long-chain fatty acids in sponge and symbiont cell types from the tropical marine spongeAmphimedon terpenensis . Lipids 29, 509–516 (1994). https://doi.org/10.1007/BF02578249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02578249

Keywords

Navigation