Skip to main content
Log in

Polyerga, a biological response modifier enhancing T-lymphocyte-dependent responses

  • Original Papers
  • Published:
Research in Experimental Medicine

Abstract

Cancer patients are often treated with biological response modifiers to enhance immunological functions. However, little is known about the actual mechanism of action of many of these substances. Therefore, we were interested in the effect of i.p. treatment with porcine low-molecular-weight spleen peptides, which are used during supportive cancer therapy, on lymphoid cell populations and function in mice. After treatment with 0.5 μg peptides/kg body weight for 14 consecutive days, lymphokine secretion and the generation of cytotoxic T-cells were significantly enhanced as compared with controls. However, there was no effect on the number of cells or the percentage of cells expressing functional surface markers in secondary lymphoid organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audhya T, Schlesinger DH, Goldstein G (1981) Complete amino acid sequence of bovine thymopoietins I, II and III: closely homologous polypeptides. Biochemistry 20:6195–6200

    Article  PubMed  CAS  Google Scholar 

  2. Audhya T, Scheid MP, Goldstein G (1984) Contrasting biological activities of thymopoietin and splenin, two closely related polypeptide products of thymus and spleen. Proc Natl Acad Sci USA 81:2847–2849

    Article  PubMed  CAS  Google Scholar 

  3. Baier JE, Neumann HA, Gallati H, Ricken D (1991) Improvement of impaired mitogen-induced interferon-gamma release of peripheral blood mononuclear cells derived from tumor patients by Polyerga. Onkologie 14 [Suppl 2]:7

    Google Scholar 

  4. Baier JE, Neumann HA, Taufighi-Chirazi T, Gallati H, Ricken D (1994) Thymopentin factor AF2 and Polyerga improve impaired mitogen-induced interferon-gamma release of peripheral blood mononuclear cells derived from tumor patients. Tumordiagn Ther 15: 21–26

    Google Scholar 

  5. Barasoain I, Rejas MT, Portolés MP, Ojeda G, Rojo JM (1987) Isoprinosine restores in vitro T-lymphocyte functions of cyclophosphamide immunosuppressed mice. Int J Immunopharmacol 9:489–496

    Article  PubMed  CAS  Google Scholar 

  6. Berressem P (1991) Adjuvant therapy in breast cancer. Gynäkologie 7:37–44

    Google Scholar 

  7. Bottomly K, Luqman M, Greenbaum L, Carding S, West J, Pasqualini T, Murphy DB (1989) A monoclonal antibody to murine CD45R distinguished CD3 T-cell populations that produce different cytokines. Eur J Immunol 19:617–623

    Article  PubMed  CAS  Google Scholar 

  8. Dexter TM, Garland J, Scott D, Scolnick E, Metcalf D (1980) Growth of factor-dependent hemopoietic precursor cell lines. J Exp Med 152:1036–1047

    Article  PubMed  CAS  Google Scholar 

  9. Dialynas DP, Wilde DB, Marrack P, Pierres A, Wall K, Harran W, Otten G, Liken M, Pierres M, Kappler J, Fitch F (1983) Characterisation of the murine antigenic determinant designated L3T4a by functional T-cell clones appears to correlate primarily with class II MHC antigen-reactivity. Immunol Rev 74:29–56

    Article  PubMed  CAS  Google Scholar 

  10. Diezel W, Eckert R, Volk HD, Goan SR, Forner K, Baehr R, Sönnichsen N, Oehme N (1987) Splenopentin—biological activities and therapeutic aspects. Z Klin Med 42:15–18

    Google Scholar 

  11. Diezel W, Volk HD, Daniel V, Gruner S, Sönnichsen N (1989) Immunostimulants—immunotherapy. Arch Geschwulstforsch 59:45–51

    PubMed  CAS  Google Scholar 

  12. Doherty PC, Allen W, Eichelberger M (1992) Roles of αβ and σ T-cell subsets in viral immunity. Annu Rev Immunol 10:123–151

    Article  PubMed  CAS  Google Scholar 

  13. Engleman EG, Benike CJ, Grumet FC, Evans RL (1981) Activation of human T-lymphocyte subsets: helper and suppressor/cytotoxic cells recognise and respond to distinct histocompatibility antigens. J Immunol 127:2124–2129

    PubMed  CAS  Google Scholar 

  14. Gillis S, Ferm MM, Ou W, Smith KA (1978) T-cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol 120:2027–2032

    PubMed  CAS  Google Scholar 

  15. Jayatilake RS, Balawardena J, Skiba G, Hartleb M (1992) Spleen peptides enhance body weight, subjective well-being and appetite in cancer patients. J Cancer Res Clin Oncol 118:R 36

    Google Scholar 

  16. Jones B, Janeway CA (1981) Functional activities of antibodies against brain-associated T-cell antigens. Eur J Immunol 11:584–592

    Article  PubMed  CAS  Google Scholar 

  17. Landgraf G (1992) Cancer therapy in daily practice. Allg Med 23:764–767

    Google Scholar 

  18. Ledbetter JA, Herzenberg LA (1979) Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev 47:63–90

    Article  PubMed  CAS  Google Scholar 

  19. Leo O, Foo M, Sachs H, Samelson EL, Bluestone A (1987) Identification of a monoclonal antibody specific for murine T3. Proc Natl Acad Sci USA 84:1374–1378

    Article  PubMed  CAS  Google Scholar 

  20. Moller T (ed) (1986) IL-2: Receptors and genes. Immunol Rev 92

  21. Mossmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  22. Nabholz M, McDonald HR (1983) Cytolytic T-lymphocytes. Annu Rev Immunol 1:273–306

    Article  PubMed  CAS  Google Scholar 

  23. Pestka S, Langer JA (1987) Interferons and their action. Annu Rev Biochem 56:727–777

    Article  PubMed  CAS  Google Scholar 

  24. Portolés P, Rojo JM, Golby A, Bonneville M, Gromkowski S, Greenbaum L, Janeway A, Murphy DB (1989) Monoclonal antibodies to murine CD3e define distinct epitopes, one of which may interact with CD3 during T-cell activation. J Immunol 142:4169–4175

    PubMed  Google Scholar 

  25. Sattar N, Mihelic M, Shekhani MS, Hartleb M, Folkers K, Voelter W (1991) A modified E-rosette assay as a semiempirical tool in search of new T-lymphocyte stimulants. Immunol Lett 27:221–224

    Article  PubMed  CAS  Google Scholar 

  26. Springer T, Galfré G, Secher DS, Milstein C (1979) Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur J Immunol 9:301–306

    Article  PubMed  CAS  Google Scholar 

  27. Warner NL, Daley MJ, Richey J, Spellman C (1979) Flow cytometry analysis of murine B cell lymphoma differentiation. Immunol Rev 48:197–243

    Article  PubMed  CAS  Google Scholar 

  28. Zarkovic N, Ilic Z, Hrzenjak M, Saric T, Bogdanovic M, Jurin M (1990) Comparison of the effect of porcine splenic peptides on the immune reactivity of normal and tumor-bearing mice. Period Biol 92 [Suppl 3]:W9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Ojeda, G., Diez-Orejas, R., Portolés, P. et al. Polyerga, a biological response modifier enhancing T-lymphocyte-dependent responses. Res. Exp. Med. 194, 261–267 (1994). https://doi.org/10.1007/BF02576387

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02576387

Key words

Navigation