Skip to main content
Log in

Calcium channel antagonist verapamil modulates human spermatozoal functions

  • Original Articles
  • Published:
Research in Experimental Medicine

Abstract

The effect of calcium channel blocker, verapamil (0.5–50 μM), has been studied in vitro in relation to certain spermatozoal functions in human ejaculates. Disruptive changes in the head and tail region of the spermatozoa, separation of heads from tails and coiling of the tail were observed. Motility was considerably reduced, while the pattern of motility also changed from rapid, linear progression to slow or sluggish linear or non-linear movement and finally to non-progressive motility, or even immotility. Verapamil significantly inhibited the influx of extracellular Ca2+. The study of kinetic effects further revealed a reduction in the maximum uptake velocity, but no change in the apparent substrate affinity constant. A highly significant decrease in Ca2+-dependent ATPase activity was also noted. In order to see whether this drug had any cytotoxic effect, presumably through lipid peroxides, thiobarbituric acid-reactive substances were measured. Verapamil produced an increase in the formation and release of malonyldialdehyde. The level of membrane cholesterol and phospholipid in the spermatozoa was also lowered considerably. The potential of such a calcium channel blocking agent in the designing of a male contraceptive programme is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alverez JG, Storey BT (1984) Assessment of cell damage caused by spontaneous lipid peroxidation in rabbit spermatozoa. Biol Reprod 30:323–331

    Article  Google Scholar 

  2. Ashraf M, Peterson RN, Russell LD (1982) Activity and location of cation-dependent ATPase on the plasma membrane of boar spermatozoa. Biochem Biophys Res Commun 107:1273–1278

    Article  PubMed  CAS  Google Scholar 

  3. Ashraf M, Peterson RN, Russell LD (1984) Characterization of (Ca2++Mg2+) adenosine triphosphatase activity and calcium transport in boar sperm plasma membrane vesicles and their relation to phosphorylation of plasma membrane proteins. Biol Reprod 31:1061–1071

    Article  PubMed  CAS  Google Scholar 

  4. Babcock DF, Pfeiffer DR (1987) Independent elevation of cytosolic Ca2+ and pH of mammalian sperm by voltage-dependent and pH-dependent mechanisms. J Biol Chem 262: 15041–15047

    PubMed  CAS  Google Scholar 

  5. Baccetti B (1975) Scanning electron microscopy of spermatozoa. In: Hayat MA (ed) Principle and techniques of electron microscopy, vol 3. Von Nostrand, New York

    Google Scholar 

  6. Barros C, Bedford JM, Franklin LE, Austin CR (1967) Membrane vesiculation as a feature of the mammalian acrosome reaction. J Cell Biol 34:C1-C5

    Article  PubMed  CAS  Google Scholar 

  7. Bartlett GR (1959) Phosphorus assay in the column chromatography. J Biol Chem 234:466–468

    PubMed  CAS  Google Scholar 

  8. Bloj B, Zilversmit DB (1982) Heterogeneity of rabbit intestine brush border plasma membrane cholesterol. J Biol Chem 257:7608–7614

    PubMed  CAS  Google Scholar 

  9. Breitbart H, Lardy HR (1987) Effect of verapamil and sulfhydryl reagents on calcium transport in bovine spermatozoa. Biol Reprod 36:658–663

    Article  PubMed  CAS  Google Scholar 

  10. Breitbart H, Stern B, Rubinstein S (1983) Calcium transport and Ca2+-ATPase activity in ram spermatozoa plasma membrane vesicles. Biochim Biophys Acta 728:349–355

    Article  PubMed  CAS  Google Scholar 

  11. Coronel CE, Lardy HA (1987) Characterization of Ca2+-uptake by guinea pig epididymal spermatozoa. Biol Reprod 37:1097–1101

    Article  PubMed  CAS  Google Scholar 

  12. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  13. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from nervous tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  14. Fraser LR (1982) Ca2+ is required for mouse sperm capacitation and fertilization in vitro. J Androl 3:412–419

    CAS  Google Scholar 

  15. Fraser LR (1984) Mechanisms controlling mammalian fertilization. Oxford Rev Reprod Biol 6:174–225

    CAS  Google Scholar 

  16. Fraser LR, McIntyre K (1989) Calcium channel antagonists modulate the acrosome reaction but not capacitation in mouse spermatozoa. J Reprod Fertil 86:223–233

    Article  PubMed  CAS  Google Scholar 

  17. Girotti AW, Thomas JP (1984) Damaging effect of oxygen radicals on resealed erythrocyte ghosts. J Biol Chem 259:1744–1748

    PubMed  CAS  Google Scholar 

  18. Girotti AW, Thomas JP, Jordon JE (1985) Lipid peroxidation in erythrocyte ghosts: sensitization of the membranes towards ascorbate and superoxide induce peroxidation and lysis. Biophys J 236:238–240

    CAS  Google Scholar 

  19. Green DPL (1978) Induction of the acrosome reaction in guinea pig sperm by divalent metal cation ionophore A23187. J Cell Sci 32:137–151

    PubMed  CAS  Google Scholar 

  20. Guraya SS (1987) Biology of spermatogenesis and spermatozoa in mammals. Springer, Berlin Heidelberg New York, pp 284–285

    Google Scholar 

  21. Hafez ESE (1976) Human semen and fertility regulation in men. Mosby, New York, p 65

    Google Scholar 

  22. Hyne RV, Higginson RE, Kohlman D, Lopata A (1984) Sodium requirement for capacitation and membrane fusion during the guinea-pig sperm acrosome reaction. J Reprod Fertil 70:83–94

    Article  PubMed  CAS  Google Scholar 

  23. Jones R, Mann T (1977) Toxicity of exogenous fatty acid peroxides towards spermatozoa. J Reprod Fertil 50:255–259

    Article  PubMed  CAS  Google Scholar 

  24. Jones R, Mann T (1977) Damage to spermatozoa by peroxidation of endogenous phospholipids. J Reprod Fertil 50:261–270

    Article  PubMed  CAS  Google Scholar 

  25. Kanwar U, Batla A, Sanyal S, Minocha R, Majumdar S, Ranga A (1989) Gossypol inhibition of Ca2+-uptake and Ca2+-ATPase in human ejaculated spermatozoal plasma membrane vesicles. Contraception 39:431–445

    Article  PubMed  CAS  Google Scholar 

  26. Kazazoglou T, Schackmann RW, Fosset M, Shapiro BM (1985) Calcium channel antagonists inhibit the acrosome reaction and bind to plasma membranes of sea urchin sperm. Proc Natl Acad Sci USA 82:1462–1464

    Article  Google Scholar 

  27. Lees M, Paxman S (1972) Modification of the Lowry procedure for the analysis of prote-olipid protein. Anal Biochem 47:184–192

    Article  PubMed  CAS  Google Scholar 

  28. Lehrminier M, Alvarado F (1981) Virtual elimination of the intestinal sugar transport kinetics by use of the tissue accumulation method at appropriate shaking rates. Pflugers Arch 389:155–158

    Article  Google Scholar 

  29. Mann T, Mann CL (1981) In: Male reproductive function and semen, Springer, Berlin Heidelberg New York, pp 195–268

    Google Scholar 

  30. Marinetti GV (1982) Chromatographic separation, identification and analysis of phospholipids. J Lipid Res 3:1–5

    Google Scholar 

  31. Meizel S (1984) The importance of hydrolytic enzymes to an exocytotic event, the mammalian sperm acrosome reaction. Biol Rev 59:125–157

    PubMed  CAS  Google Scholar 

  32. Renton KW (1985) Inhibition of hepatic microsomal drug metabolism by the calcium channel blockers diltiazem and verapamil. Toxicology 34:2549–2553

    CAS  Google Scholar 

  33. Roldan ERS, Fleming AD (1989) Is a Ca2+-ATPase involved in Ca2+ regulation during capacitation and the acrosome reaction of guinea pig spermatozoa. J Reprod Fertil 85:297–308

    Article  PubMed  CAS  Google Scholar 

  34. Rufo GA, Schoff PK, Lardy HA (1984) Regulation of calcium content in bovine spermatozoa. J Biol Chem 259:2547–2552

    PubMed  CAS  Google Scholar 

  35. Schackmann RW, Eddy EM, Shapiro BM (1978) The acrosome reaction ofStrongylocentrotus purpuratus sperm. Ion requirements and movements. Dev Biol 65:483–495

    Article  PubMed  CAS  Google Scholar 

  36. Seth SD, Maulik SK, Gupta YK (1987) Calcium and calcium channel blockers: basic and clinical considerations. J Exp Biol 25:729–741

    CAS  Google Scholar 

  37. Singh JP, Babcock DF, Lardy HA (1978) Increased calcium-ion influx is a component of capacitation of spermatozoa. Biochem J 172:549–556

    PubMed  CAS  Google Scholar 

  38. Singh JP, Babcock DF, Lardy HA (1980) Induction of accelerated acrosome reaction in guinea pig sperm. Biol Reprod 22:566–570

    Article  PubMed  CAS  Google Scholar 

  39. Talbot P, Summers RG, Hylander BL, Keough EM, Franklin LE (1976) The role of calcium in the acrosome reaction: an analysis using the ionophore A23187. J Exp Zool 198:383–392

    Article  PubMed  CAS  Google Scholar 

  40. Triggle DJ, Janis RA (1987) Calcium channel ligands. Annu Rev Pharmacol Toxicol 27: 347–369

    Article  PubMed  CAS  Google Scholar 

  41. WHO laboratory manual for the examination of human semen and semen-cervical mucus interaction (1992). Cambridge University Press, Cambridge, pp 3–18

  42. Yanagimachi R (1981) Mechanisms of fertilization in mammals. In: Mastroianni L Jr, Biggerss JD (eds) Fertilization and embryonic development in vitro. Plenum Press, New York, pp 81–182

    Google Scholar 

  43. Yanagimachi R, Usui N (1974) Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa. Exp Cell Res 89:161–174

    Article  PubMed  CAS  Google Scholar 

  44. Yuli I, Wilbrandt W, Shinitsky M (1981) Glucose transport through cell membrane of modified lipid fluidity. Biochemistry 20:4250–4256

    Article  PubMed  CAS  Google Scholar 

  45. Zlatkis A, Zak B, Boyle AJ (1953) A new method for the direct determination for serum cholesterol. J Lab Clin Med 41:486–492

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, R.J.K., Kanwar, U. & Sanyal, S.N. Calcium channel antagonist verapamil modulates human spermatozoal functions. Res. Exp. Med. 194, 165–178 (1994). https://doi.org/10.1007/BF02576377

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02576377

Key words

Navigation