Skip to main content
Log in

Inhibition of rat mitochondrial functions in vivo by 6-OHDA and reserpine

  • Original Papers
  • Published:
Research in Experimental Medicine

Abstract

Reserpine caused a decrease in the state 3, respiratory control ratio (RCR) and ADP/O ratio in frontal cortex, striatum and liver of rats 1 h after drug administration. State 4 respiratory rate was stimulated in frontal cortex and striatum. In the liver, 6-OHDA decreased the ADP/O ratio when both pyruvate/malate and succinate were used as substrates. Reserpine induced changes in the activities of Na+K+-ATPase and Mg2+-ATPase in frontal cortex and liver 15 min and 4 h after administration of the drug. In the liver only 6-OHDA caused the depression of Mg2+-ATPase activity (P<0.05). Reserpine altered the levels of K+, Na+ and Ca2+ cations in rat frontal cortex and striatum, while 6-OHDA caused a decrease in the amount of Mg2+ in liver (P<0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069

    Article  PubMed  CAS  Google Scholar 

  2. Barbee SJ, Hartung R (1979) Diethanolamine-induced alteration of hepatic mitochondrial function and structure. Toxicol Appl Pharmacol 47:431–440

    Article  PubMed  CAS  Google Scholar 

  3. Osubor CC, Nwanze EAC (1993) Acute changes in oxygen consumption and oxidative phosphorylation by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mouse brain following in vivo administration. Med Sci Res 21:99–100

    CAS  Google Scholar 

  4. Alto L, Dhalla NS (1979) Effects of some antiarrhythmic agents on dog heart mitochondrial oxidative phosphorylation. Eur J Pharmacol 59:311–314

    Article  PubMed  CAS  Google Scholar 

  5. Heinz E (1967) Transport through biological membranes. Annu Rev Physiol 29:21–58

    Article  PubMed  CAS  Google Scholar 

  6. Rossier BC, Geering K, Kraehenbuhl JP (1987) Regulation of the sodium pump: how and why? Trends Biochem Sci 12:483–487

    Article  CAS  Google Scholar 

  7. Gomperts BD (1986) Calcium shares the limelight in stimulus—secretion coupling. Trends Biochem Sci 11:290–292

    Article  CAS  Google Scholar 

  8. Israel Y, Salazar I (1967) Inhibition of brain microsomal adenosine triphosphateses by general depressants. Arch Biochem Biophys 122:310–317

    Article  PubMed  CAS  Google Scholar 

  9. Kass GEN, Wright JM, Nicotera P, Orrenius S (1988) The mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity: role of intracellular calcium. Arch Biochem Biophys 260:789–797

    Article  PubMed  CAS  Google Scholar 

  10. Stitzel RE (1976) The biological fate of reserpine. Pharmacol Rev 28:179–205

    PubMed  CAS  Google Scholar 

  11. Axelrod J, Tomchick R (1959) Activation and inhibition of adrenaline metabolism. Nature 184:2027–2032

    Article  PubMed  CAS  Google Scholar 

  12. Carlsson A, Hillarp NA, Waldeck B (1962) Mg2+-ATP dependent storage mechanism in the amine granules of the adrenal medulla. Med Exp 6:47–53

    PubMed  CAS  Google Scholar 

  13. Porter CC, Totaro JA, Burcin A (1965) The relationship between radioactivity and norepinephrine concentrations in the brains and heart of mice following administration of labelled methyldopa or 6-hydroxydopamine. J Pharmacol Exp Ther 150:17–22

    PubMed  CAS  Google Scholar 

  14. Laverty R, Phelan EL (1969) Effects of 6-hydroxydopamine on noradrenaline storage and uptake in the rat. Proc Univ Otago Med School 47:18–19

    Google Scholar 

  15. Tranzer JP, Thoenen H (1967) Electron microscopic localization of 5-hydroxydopamine (3,4,5-trihydroxyphenylethylamine), a, new false sympathetic transmitter. Experientia, 23: 743–745

    Article  PubMed  CAS  Google Scholar 

  16. Heikkila RE, Cohen G (1972) In vitro generation of hydrogen peroxide from 6-hydroxydopamine. Experientia 28:1197–1198

    Article  PubMed  CAS  Google Scholar 

  17. Heikkila RE, Cohen G (1973) 6-hydroxydopamine: evidence for superoxide radical as an oxidative intermediate. Science 181:456–457

    Article  PubMed  CAS  Google Scholar 

  18. Maina G (1974) Reserpine as an uncoupling agent. Biochim Biophys Acta 333:481–486

    Article  CAS  Google Scholar 

  19. Wagner K (1971) Uncoupling of oxidative phosphorylation by 6-hydroxydopamine. In: Malmfors T, Thoenen H (eds) 6-hydroxydopamine and catecholamine neurones. North-Holland, Amsterdam, pp 277–278

    Google Scholar 

  20. Thakar JH, Hassan MN (1988) Effects of 6-hydroxydopamine on oxidative phosphorylation of mitochondria from rat striatum, frontal cortex and liver. Can J Physiol Pharmacol 66:376–379

    PubMed  CAS  Google Scholar 

  21. Jonsson G, Nwanze E (1982) Selective (+)—amphetamine neurotoxicity on striatal dopamine nerve terminals in the mouse. Br J Pharmacol 77:335–345

    PubMed  CAS  Google Scholar 

  22. Bonting SL (1970) Sodium-potassium activated adenosine triphosphatase and cation transport. In: Bittar EE (ed) Membranes and ion transport vol 1. Wiley-Interscience, New York, pp 257–363

    Google Scholar 

  23. Fiske CH, Subbarrow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 60:375–400

    Google Scholar 

  24. Takeo S, Fliegel L, Beamish RE, Dhalla NS (1980) Effects of adrenochrome on rat heart sarcolemma ATPase activities. Biochem Pharmacol 29:559–564

    Article  PubMed  CAS  Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RT (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  26. Thakar JH, Hassan MN (1988) Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydrophyridine (MPTP), cyperquat (MPP+) and paraquat on isolated mitochondria from rat striatum, cortex and liver. Life Sci 43:143–149

    Article  PubMed  CAS  Google Scholar 

  27. Coyle JT, Axelrod J (1971) Development of the uptake and storage ofl-[3H]—norepinephrine in the rat brain. J Neurochem 18:2061–2075

    Article  PubMed  CAS  Google Scholar 

  28. Heikkila RE, Cohen G (1971) Inhibition of biogenic amine—uptake by hydrogen peroxide. A mechanism for toxic effects of 6-hydroxydopamine. Science 173:1257–1258

    Article  Google Scholar 

  29. Giachetti A, Shore, PA (1970) Permeability changes induced in the adrenergic neurone by reserpine. Biochem Pharmacol 19:1621–1626

    Article  PubMed  CAS  Google Scholar 

  30. Shore PA, (1972) Transport and storage of biogenic amines. Annu Rev Pharmacol 12: 209–226

    Article  PubMed  CAS  Google Scholar 

  31. Shankar R, Mishra OP (1974) Effect of reserpine on cation contents of rat brain. Nature 251:532

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osubor, C.C., Nwanze, E.A.C. Inhibition of rat mitochondrial functions in vivo by 6-OHDA and reserpine. Res. Exp. Med. 194, 109–117 (1994). https://doi.org/10.1007/BF02576371

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02576371

Key words

Navigation